ترغب بنشر مسار تعليمي؟ اضغط هنا

An effective formalism for testing extensions to General Relativity with gravitational waves

80   0   0.0 ( 0 )
 نشر من قبل Junwu Huang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent direct observation of gravitational waves (GW) from merging black holes opens up the possibility of exploring the theory of gravity in the strong regime at an unprecedented level. It is therefore interesting to explore which extensions to General Relativity (GR) could be detected. We construct an Effective Field Theory (EFT) satisfying the following requirements. It is testable with GW observations; it is consistent with other experiments, including short distance tests of GR; it agrees with widely accepted principles of physics, such as locality, causality and unitarity; and it does not involve new light degrees of freedom. The most general theory satisfying these requirements corresponds to adding to the GR Lagrangian operators constructed out of powers of the Riemann tensor, suppressed by a scale comparable to the curvature of the observed merging binaries. The presence of these operators modifies the gravitational potential between the compact objects, as well as their effective mass and current quadrupoles, ultimately correcting the waveform of the emitted GW.



قيم البحث

اقرأ أيضاً

121 - Zack Carson , Kent Yagi 2020
Gravitational-wave sources offer us unique testbeds for probing strong-field, dynamical and nonlinear aspects of gravity. In this chapter, we give a brief overview of the current status and future prospects of testing General Relativity with gravitat ional waves. In particular, we focus on three theory-agnostic tests (parameterized tests, inspiral-merger-ringdown consistency tests, and gravitational-wave propagation tests) and explain how one can apply such tests to example modified theories of gravity. We conclude by giving some open questions that need to be resolved to carry out more accurate tests of gravity with gravitational waves.
126 - Luc Blanchet 2019
After a short review of prominent properties of gravitational waves and the newly born gravitational astronomy, we focus on theoretical aspects. Analytic approximation methods in general relativity have played a crucial role in the recent discoveries of gravitational waves. They are used to build theoretical template banks for searching and analyzing the signals in the ground-based detectors LIGO and Virgo, and, further ahead, space-based LISA-like detectors. In particular, the post-Newtonian approximation describes with high accuracy the early inspiral of compact binary systems, made of black holes or neutron stars. It mainly consists of extending the Einstein quadrupole formula by a series of relativistic corrections up to high order. The compact objects are modelled by point masses with spins. The practical calculations face difficult problems of divergences, which have been solved thanks to the dimensional regularization. In the last rotations before the merger, the finite size effects and the internal structure of neutron stars (notably the internal equation of state) affect the evolution of the orbit and the emission of gravitational waves. We describe these effects within a simple Newtonian model.
485 - Michele Vallisneri 2012
The observations of gravitational-wave signals from astrophysical sources such as binary inspirals will be used to test General Relativity for self consistency and against alternative theories of gravity. I describe a simple formula that can be used to characterize the prospects of such tests, by estimating the matched-filtering signal-to-noise ratio required to detect non-General-Relativistic corrections of a given magnitude. The formula is valid for sufficiently strong signals; it requires the computation of a single number, the fitting factor between the General-Relativistic and corrected waveform families; and it can be applied to all tests that embed General Relativity in a larger theory, including tests of individual theories such as Brans-Dicke gravity, as well as the phenomenological schemes that introduce corrections and extra terms in the post-Newtonian phasing expressions of inspiral waveforms. The formula suggests that the volume-limited gravitational-wave searches performed with second-generation ground-based detectors would detect alternative-gravity corrections to General-Relativistic waveforms no smaller than 1-10% (corresponding to fitting factors of 0.9 to 0.99).
We investigate the cosmological behavior in a universe governed by time asymmetric extensions of general relativity, which is a novel modified gravity based on the addition of new, time-asymmetric, terms on the Hamiltonian framework, in a way that th e algebra of constraints and local physics remain unchanged. Nevertheless, at cosmological scales these new terms can have significant effects that can alter the universe evolution, both at early and late times, and the freedom in the choice of the involved modification function makes the scenario able to produce a huge class of cosmological behaviors. For basic ansatzes of modification, we perform a detailed dynamical analysis, extracting the stable late-time solutions. Amongst others, we find that the universe can result in dark-energy dominated, accelerating solutions, even in the absence of an explicit cosmological constant, in which the dark energy can be quintessence-like, phantom-like, or behave as an effective cosmological constant. Moreover, it can result to matter-domination, or to a Big Rip, or experience the sequence from matter to dark energy domination. Additionally, in the case of closed curvature, the universe may experience a cosmological bounce or turnaround, or even cyclic behavior. Finally, these scenarios can easily satisfy the observational and phenomenological requirements. Hence, time asymmetric cosmology can be a good candidate for the description of the universe.
183 - Angelo Tartaglia 2015
This lecture will present a review of the past and present tests of the General Relativity theory. The essentials of the theory will be recalled and the measurable effects will be listed and analyzed. The main historical confirmations of General Rela tivity will be described. Then, the present situation will be reviewed presenting a number of examples. The opportunities given by astrophysical and astrometric observations will be shortly discussed. Coming to terrestrial experiments the attention will be specially focused on ringlasers and a dedicated experiment for the Gran Sasso Laboratories, named by the acronym GINGER, will be presented. Mention will also be made of alternatives to the use of light, such as particle beams and superfluid rings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا