ﻻ يوجد ملخص باللغة العربية
Given a space X we study the topology of the space of embeddings of X into $mathbb{R}^d$ through the combinatorics of triangulations of X. We give a simple combinatorial formula for upper bounds for the largest dimension of a sphere that antipodally maps into the space of embeddings. This result summarizes and extends results about the nonembeddability of complexes into $mathbb{R}^d$, the nonexistence of nonsingular bilinear maps, and the study of embeddings into $mathbb{R}^d$ up to isotopy, such as the chirality of spatial graphs.
We study relations between maps between relatively hyperbolic groups/spaces and quasisymmetric embeddings between their boundaries. More specifically, we establish a correspondence between (not necessarily coarsely surjective) quasi-isometric embeddi
Entangled embedded periodic nets and crystal frameworks are defined, along with their dimension type, homogeneity type, adjacency depth and periodic isotopy type. We obtain periodic isotopy classifications for various families of embedded nets with s
In this paper, we investigate representations of links that are either centrally symmetric in $mathbb{R}^3$ or antipodally symmetric in $mathbb{S}^3$. By using the notions of antipodally self-dual and antipodally symmetric maps, introduced and studie
We obtain a criterion for approximability by embeddings of piecewise linear maps of a circle to the plane, analogous to the one proved by Minc for maps of a segment to the plane. Theorem. Let S be a triangulation of a circle with s vertices. Let f
We show that the size of codes in projective space controls structural results for zeros of odd maps from spheres to Euclidean space. In fact, this relation is given through the topology of the space of probability measures on the sphere whose suppor