ﻻ يوجد ملخص باللغة العربية
Entangled embedded periodic nets and crystal frameworks are defined, along with their dimension type, homogeneity type, adjacency depth and periodic isotopy type. We obtain periodic isotopy classifications for various families of embedded nets with small quotient graphs. We enumerate the 25 periodic isotopy classes of depth 1 embedded nets with a single vertex quotient graph. Additionally, we classify embeddings of n-fold copies of pcu with all connected components in a parallel orientation and n vertices in a repeat unit, and determine their maximal symmetry periodic isotopes. We also introduce the methodology of linear graph knots on the flat 3-torus [0, 1)^3. These graph knots, with linear edges, are spatial embeddings of the labelled quotient graphs of an embedded net which are associated with its periodicity bases.
We show that in a prime, closed, oriented 3-manifold M, equivalent knots are isotopic if and only if the orientation preserving mapping class group is trivial. In the case of irreducible, closed, oriented $3$-manifolds we show the more general fact t
An elementary stabilization of a Legendrian link $L$ in the spherical cotangent bundle $ST^*M$ of a surface $M$ is a surgery that results in attaching a handle to $M$ along two discs away from the image in $M$ of the projection of the link $L$. A vir
In this article we describe the summit sets in B_3, the smallest element in a summit set and we compute the Hilbert series corresponding to conjugacy classes.The results will be related to Birman-Menesco classification of knots with braid index three or less than three.
We obtain a criterion for approximability by embeddings of piecewise linear maps of a circle to the plane, analogous to the one proved by Minc for maps of a segment to the plane. Theorem. Let S be a triangulation of a circle with s vertices. Let f
In this article we show that every closed orientable smooth $4$--manifold admits a smooth embedding in the complex projective $3$--space.