ﻻ يوجد ملخص باللغة العربية
We present a 1 GHz-clocked, maximally entangled and on-demand photon pair source based on droplet etched GaAs quantum dots using two-photon excitation. By employing these GaP microlensenhanced devices in conjunction with their substantial brightness, raw entanglement fidelities of up to $0.95 pm 0.01$ and post-selected photon indistinguishabilities of up to $0.93 pm 0.01$, the suitability for quantum repeater based long range quantum entanglement distribution schemes is shown. Comprehensive investigations of a complete set of polarization selective two-photon correlations as well as time resolved Hong-Ou-Mandel interferences facilitate innovative methods that determine quantities such as photon extraction and excitation efficiencies as well as pure dephasing directly - opposed to commonly employed indirect techniques.
We perform full time resolved tomographic measurements of the polarization state of pairs of photons emitted during the radiative cascade of the confined biexciton in a semiconductor quantum dot. The biexciton was deterministically initiated using a
More than 80 years passed since the first publication on entangled quantum states. In this period of time the concept of spookily interacting quantum states became an emerging field of science. After various experiments proving the existence of such
We present a versatile, high-brightness, guided-wave source of polarization entangled photons, emitted at a telecom wavelength. Photon-pairs are generated using an integrated type-0 nonlinear waveguide, and subsequently prepared in a polarization ent
A maximally entangled state is a quantum state which has maximum von Neumann entropy for each bipartition. Through proposing a new method to classify quantum states by using concurrences of pure states of a region, one can apply Bells inequality to s
Quantum networks are essential for realising distributed quantum computation and quantum communication. Entangled photons are a key resource, with applications such as quantum key distribution, quantum relays, and quantum repeaters. All components in