ﻻ يوجد ملخص باللغة العربية
More than 80 years passed since the first publication on entangled quantum states. In this period of time the concept of spookily interacting quantum states became an emerging field of science. After various experiments proving the existence of such non-classical states, visionary ideas were put forward to exploit entanglement in quantum information science and technology. These novel concepts have not yet come out of the experimental stage, mostly because of the lack of suitable, deterministic sources of entangled quantum states. Among many systems under investigation, semiconductor quantum dots are particularly appealing emitters of on-demand, single polarization-entangled photon-pairs. Although, it was originally believed that quantum dots must exhibit a limited degree of entanglement related to numerous decoherence effects present in the solid-state. Recent studies invalidated the premise of unavoidable entanglement degrading effects. We review the relevant experiments which have led to these important discoveries and discuss the remaining challenges for the anticipated quantum technologies.
The realisation of a triggered entangled photon source will be of great importance in quantum information, including for quantum key distribution and quantum computation. We show here that: 1) the source reported in ``A semiconductor source of trigge
We present a 1 GHz-clocked, maximally entangled and on-demand photon pair source based on droplet etched GaAs quantum dots using two-photon excitation. By employing these GaP microlensenhanced devices in conjunction with their substantial brightness,
Entangled photon generation from semiconductor quantum dots via the biexciton-exciton cascade underlies various decoherence mechanisms related to the solid-state nature of the quantum emitters. So far, this has prevented the demonstration of nearly-m
We perform full time resolved tomographic measurements of the polarization state of pairs of photons emitted during the radiative cascade of the confined biexciton in a semiconductor quantum dot. The biexciton was deterministically initiated using a
State-of-the-art quantum key distribution systems are based on the BB84 protocol and single photons generated by lasers. These implementations suffer from range limitations and security loopholes, which require expensive adaptation. The use of polari