ﻻ يوجد ملخص باللغة العربية
A maximally entangled state is a quantum state which has maximum von Neumann entropy for each bipartition. Through proposing a new method to classify quantum states by using concurrences of pure states of a region, one can apply Bells inequality to study intensity of quantum entanglement of maximally entangled states. We use a class of seven-qubit quantum states to demonstrate the method, where we express all coefficients of the quantum states in terms of concurrences of pure states of a region. When a critical point of an upper bound of Bells inequality occurs in our quantum states, one of the quantum state is a ground state of the toric code model on a disk manifold. Our result also implies that the maximally entangled states does not suggest local maximum quantum entanglement in our quantum states.
The robustness of Bells inequality (in CHSH form) violation by entangled state in the simultaneous presence of colored and white noise in the system is considered. A twophoton polarization state is modeled by twoparameter density matrix. Setting para
Quantum communication relies on the efficient generation of entanglement between remote quantum nodes, due to entanglements key role in achieving and verifying secure communications. Remote entanglement has been realized using a number of different p
Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization
We present a 1 GHz-clocked, maximally entangled and on-demand photon pair source based on droplet etched GaAs quantum dots using two-photon excitation. By employing these GaP microlensenhanced devices in conjunction with their substantial brightness,
Quantum mechanical phase factors can be related to dynamical effects or to the geometrical properties of a trajectory in a given space - either parameter space or Hilbert space. Here, we experimentally investigate a quantum mechanical phase factor th