ﻻ يوجد ملخص باللغة العربية
The ability to manipulate quantum systems lies at the heart of the development of quantum technology. The ultimate goal of quantum control is to realize arbitrary quantum operations (AQuOs) for all possible open quantum system dynamics. However, the demanding extra physical resources impose great obstacles. Here, we experimentally demonstrate a universal approach of AQuO on a photonic qudit with minimum physical resource of a two-level ancilla and a $log_{2}d$-scale circuit depth for a $d$-dimensional system. The AQuO is then applied in quantum trajectory simulation for quantum subspace stabilization and quantum Zeno dynamics, as well as incoherent manipulation and generalized measurements of the qudit. Therefore, the demonstrated AQuO for complete quantum control would play an indispensable role in quantum information science.
In high dimensional quantum communication networks, quantum frequency convertor (QFC) is indispensable as an interface in the frequency domain. For example, many QFCs have been built to link atomic memories and fiber channels. However, almost all of
Quantum control in large dimensional Hilbert spaces is essential for realizing the power of quantum information processing. For closed quantum systems the relevant input/output maps are unitary transformations, and the fundamental challenge becomes h
Non-Hermitian systems with parity-time ($mathcal{PT}$) symmetry give rise to exceptional points (EPs) with exceptional properties that arise due to the coalescence of eigenvectors. Such systems have been extensively explored in the classical domain,
The accuracy of estimating $d$-dimensional quantum states is limited by the Gill-Massar bound. It can be saturated in the qubit ($d=2$) scenario using adaptive standard quantum tomography. In higher dimensions, however, this is not the case and the a
We study the Bell nonlocality of high dimensional quantum systems based on quantum entanglement. A quantitative relationship between the maximal expectation value B of Bell operators and the quantum entanglement concurrence C is obtained for even dim