ﻻ يوجد ملخص باللغة العربية
In high dimensional quantum communication networks, quantum frequency convertor (QFC) is indispensable as an interface in the frequency domain. For example, many QFCs have been built to link atomic memories and fiber channels. However, almost all of QFCs work in a two-dimensional space. It is still a pivotal challenge to construct a high-quality QFC for some complex quantum states, e.g., a high dimensional single-photon state that refers to a qudit. Here, we firstly propose a high-dimensional QFC for an orbital angular momentum qudit via sum frequency conversion with a flat top beam pump. As a proof-of-principle demonstration, we realize quantum frequency
While coherently-driven Kerr microcavities have rapidly matured as a platform for frequency comb formation, such microresonators generally possess weak Kerr coefficients; consequently, triggering comb generation requires millions of photons to be cir
We experimentally demonstrate a mode-selective quantum frequency converter over a compound spatio-temporal Hilbert space. We show that our method can achieve high-extinction for high-dimensional quantum state tomography by selectively upconverting th
We argue that long optical storage times are required to establish entanglement at high rates over large distances using memory-based quantum repeaters. Triggered by this conclusion, we investigate the $^3$H$_6$ $leftrightarrow$ $^3$H$_4$ transition
With the aim to loosen the entanglement requirements of quantum illumination, we study the performance of a family of Gaussian states at the transmitter, combined with an optimal and joint quantum measurement at the receiver. We find that maximal ent
High-dimensional quantum states are promising resources for quantum communication and processing. In this context the frequency degree of freedom of light combines the advantages of robustness and easy handling with standard classical telecommunicati