We study the Bell nonlocality of high dimensional quantum systems based on quantum entanglement. A quantitative relationship between the maximal expectation value B of Bell operators and the quantum entanglement concurrence C is obtained for even dimension pure states, with the upper and lower bounds of B governed by C.
In this paper, we generalize the concept of strong quantum nonlocality from two aspects. Firstly in $mathbb{C}^dotimesmathbb{C}^dotimesmathbb{C}^d$ quantum system, we present a construction of strongly nonlocal quantum states containing $6(d-1)^2$ or
thogonal product states, which is one order of magnitude less than the number of basis states $d^3$. Secondly, we give the explicit form of strongly nonlocal orthogonal product basis in $mathbb{C}^3otimes mathbb{C}^3otimes mathbb{C}^3otimes mathbb{C}^3$ quantum system, where four is the largest known number of subsystems in which there exists strong quantum nonlocality up to now. Both the two results positively answer the open problems in [Halder, textit{et al.}, PRL, 122, 040403 (2019)], that is, there do exist and even smaller number of quantum states can demonstrate strong quantum nonlocality without entanglement.
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks such as parallel computation and circuit optimisation. Crucially, the communication overhead introduced by the allotment process should be minimised -- a
key motivation behind the communication complexity problem (CCP). Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts. Furthermore, the connection between quantum CCPs and nonlocality provides an information-theoretic insights into fundamental quantum mechanics. Here we connect quantum CCPs with a generalised nonlocality framework -- beyond the paradigmatic Bells theorem -- by incorporating the underlying causal structure, which governs the distributed task, into a so-called nonlocal hidden variable model. We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities, whose violation is both necessary and sufficient for a quantum gain. We experimentally implement a multipartite CCP akin to the guess-your-neighbour-input scenario, and demonstrate a quantum advantage when multipartite Greenberger-Horne-Zeilinger (GHZ) states are shared among three users.
Entanglement of quasiclassical (coherent) states of two harmonic oscillators leads to striking quantum effects and is useful for quantum technologies. These effects and applications are closely related to nonlocal correlations inherent in these state
s, manifested by the violation of Bell inequalities. With previous frameworks, this violation is limited by the size of the system, which does not approach the maximum even when the amount of entanglement approaches its maximum. Here we propose a new version of Bell correlation operators, with which a nearly maximal violation can be obtained as long as the associated entanglement approximates to the maximum. Consequently, the revealed nonlocality is significantly stronger than those with previous frameworks for a wide range of the system size. We present a new scheme for realizing the gate necessary for measurement of the nonlocal correlations. In addition to the use in test of quantum nonlocality, this gate is useful for quantum information processing with coherent states
The accuracy of estimating $d$-dimensional quantum states is limited by the Gill-Massar bound. It can be saturated in the qubit ($d=2$) scenario using adaptive standard quantum tomography. In higher dimensions, however, this is not the case and the a
ccuracy achievable with adaptive quantum tomography quickly deteriorates with increasing $d$. Moreover, it is not known whether or not the Gill-Massar bound can be reached for an arbitrary $d$. To overcome this limitation, we introduce an adaptive tomographic method that is characterized by a precision that is better than half that of the Gill-Massar bound for any finite dimension. This provides a new achievable accuracy limit for quantum state estimation. We demonstrate the high-accuracy of our method by estimating the state of 10-dimensional quantum systems. With the advent of new technologies capable of high-dimensional quantum information processing, our results become critically relevant as state reconstruction is an essential tool for certifying the proper operation of quantum devices.
We discuss the connection between the incompatibility of quantum measurements, as captured by the notion of joint measurability, and the violation of Bell inequalities. Specifically, we present explicitly a given a set of non jointly measurable POVMs
$mathcal{M}_A$ with the following property. Considering a bipartite Bell test where Alice uses $mathcal{M}_A$, then for any possible shared entangled state $rho$ and any set of (possibly infinitely many) POVMs $mathcal{N}_B$ performed by Bob, the resulting statistics admits a local model, and can thus never violate any Bell inequality. This shows that quantum measurement incompatibility does not imply Bell nonlocality in general.
Tinggui Zhang
,Ya Xi
,Shao-Ming Fei
.
(2021)
.
"A note on quantum Bell nonlocality and quantum entanglement for high dimensional quantum systems"
.
Tinggui Zhang
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا