بالنسبة للمصفوفات الثنائية الموجبة النقطية $A$ و $B$، أثبت Ando و Zhan الإنحدارات $||| f(A)+f(B) ||| ge ||| f(A+B) |||$ و $||| g(A)+g(B) ||| le ||| g(A+B) |||$، لأي نوع من الأنظمة الثابتة المتحيزة، و لأي دالة تحفظ الأولوية السالبة على $[0,infty)$ بإخلاء دالة $g$. وقد تم توسيع هذه الإنحدارات حديثا إلى الدوال السالبة الغير موجبة والدوال المثبتة الغير منفية عن طريق Bourin و Uchiyama و Kosem على التوالي. في هذا البحث نناقش السؤال المرتبط بذلك حول ما إذا كانت الإنحدارات $||| f(A)-f(B) ||| le ||| f(|A-B|) |||$، و $||| g(A)-g(B) ||| ge ||| g(|A-B|) |||$، التي تم الحصول عليها من قبل Ando لدالة تحفظ الأولوية $f$ مع إخلاء $g$، يوجد لها توسيع مشابه إلى الدوال السالبة الغير موجبة والدوال المثبتة الغير منفية؟ ونجيب على هذا السؤال بشكل سلبي للمصفوفات العامة، وبشكل موجب للحالة الخاصة عندما $Age ||B||$. في طور هذا العمل، نقدم المفهوم الجديد للتحكم المغلوب بين الطيفين لمصفوفتين الهيرميتيتين، حيث يكون $Y$ نفسه مصفوفة هيرميتية، ونبرهن خاصية من هذا العلاق التي تسمح لتعزيز نتائج Bourin-Uchiyama و Kosem المذكورة أعلاه.
For positive semidefinite matrices $A$ and $B$, Ando and Zhan proved the inequalities $||| f(A)+f(B) ||| ge ||| f(A+B) |||$ and $||| g(A)+g(B) ||| le ||| g(A+B) |||$, for any unitarily invariant norm, and for any non-negative operator monotone $f$ on $[0,infty)$ with inverse function $g$. These inequalities have very recently been generalised to non-negative concave functions $f$ and non-negative convex functions $g$, by Bourin and Uchiyama, and Kosem, respectively. In this paper we consider the related question whether the inequalities $||| f(A)-f(B) ||| le ||| f(|A-B|) |||$, and $||| g(A)-g(B) ||| ge ||| g(|A-B|) |||$, obtained by Ando, for operator monotone $f$ with inverse $g$, also have a similar generalisation to non-negative concave $f$ and convex $g$. We answer exactly this question, in the negative for general matrices, and affirmatively in the special case when $Age ||B||$. In the course of this work, we introduce the novel notion of $Y$-dominated majorisation between the spectra of two Hermitian matrices, where $Y$ is itself a Hermitian matrix, and prove a certain property of this relation that allows to strengthen the results of Bourin-Uchiyama and Kosem, mentioned above.
Sub-additive and super-additive inequalities for concave and convex functions have been generalized to the case of matrices by several authors over a period of time. These lead to some interesting inequalities for matrices, which in some cases coinci
In this paper, we introduce the concept of operator geometrically convex functions for positive linear operators and prove some Hermite-Hadamard type inequalities for these functions. As applications, we obtain trace inequalities for operators which give some refinements of previous results.
In this paper, we introduce the concept of operator arithmetic-geometrically convex functions for positive linear operators and prove some Hermite-Hadamard type inequalities for these functions. As applications, we obtain trace inequalities for opera
Convexification based on convex envelopes is ubiquitous in the non-linear optimization literature. Thanks to considerable efforts of the optimization community for decades, we are able to compute the convex envelopes of a considerable number of funct
Affine invariant points and maps for sets were introduced by Grunbaum to study the symmetry structure of convex sets. We extend these notions to a functional setting. The role of symmetry of the set is now taken by evenness of the function. We show t