ترغب بنشر مسار تعليمي؟ اضغط هنا

Probabilistic small data global well-posedness of the energy-critical Maxwell-Klein-Gordon equation

71   0   0.0 ( 0 )
 نشر من قبل Jonas Luhrmann
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish probabilistic small data global well-posedness of the energy-critical Maxwell-Klein-Gordon equation relative to the Coulomb gauge for scaling super-critical random initial data. The proof relies on an induction on frequency procedure and a modified linear-nonlinear decomposition furnished by a delicate probabilistic parametrix construction. This is the first global existence result for a geometric wave equation for random initial data at scaling super-critical regularity.



قيم البحث

اقرأ أيضاً

145 - Elena Kopylova 2016
We prove global well-posedness for the 3D Klein-Gordon equation with a concentrated nonlinearity.
146 - Shiwu Yang , Pin Yu 2018
On the three dimensional Euclidean space, for data with finite energy, it is well-known that the Maxwell-Klein-Gordon equations admit global solutions. However, the asymptotic behaviours of the solutions for the data with non-vanishing charge and arb itrary large size are unknown. It is conjectured that the solutions disperse as linear waves and enjoy the so-called peeling properties for pointwise estimates. We provide a gauge independent proof of the conjecture.
We provide a new analysis of the Boltzmann equation with constant collision kernel in two space dimensions. The scaling-critical Lebesgue space is $L^2_{x,v}$; we prove global well-posedness and a version of scattering, assuming that the data $f_0$ i s sufficiently smooth and localized, and the $L^2_{x,v}$ norm of $f_0$ is sufficiently small. The proof relies upon a new scaling-critical bilinear spacetime estimate for the collision gain term in Boltzmanns equation, combined with a novel application of the Kaniel-Shinbrot iteration.
90 - Shiwu Yang 2015
It is known that the Maxwell-Klein-Gordon equations in $mathbb{R}^{3+1}$ admit global solutions with finite energy data. In this paper, we present a new approach to study the asymptotic behavior of these global solutions. We show the quantitative ene rgy flux decay of the solutions with data merely bounded in some weighted energy space. We also establish an integrated local energy decay and a hierarchy of $r$-weighted energy decay. The results in particular hold in the presence of large total charge. This is the first result to give a complete and precise description of the global behavior of large nonlinear charged scalar fields.
We study the Cauchy problem for the semilinear heat equation with the singular potential, called the Hardy-Sobolev parabolic equation, in the energy space. The aim of this paper is to determine a necessary and sufficient condition on initial data bel ow or at the ground state, under which the behavior of solutions is completely dichotomized. More precisely, the solution exists globally in time and its energy decays to zero in time, or it blows up in finite or infinite time. The result on the dichotomy for the corresponding Dirichlet problem is also shown as a by-product via comparison principle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا