ﻻ يوجد ملخص باللغة العربية
We study the Cauchy problem for the semilinear heat equation with the singular potential, called the Hardy-Sobolev parabolic equation, in the energy space. The aim of this paper is to determine a necessary and sufficient condition on initial data below or at the ground state, under which the behavior of solutions is completely dichotomized. More precisely, the solution exists globally in time and its energy decays to zero in time, or it blows up in finite or infinite time. The result on the dichotomy for the corresponding Dirichlet problem is also shown as a by-product via comparison principle.
The Cauchy problem for the Hardy-Henon parabolic equation is studied in the critical and subcritical regime in weighted Lebesgue spaces on the Euclidean space $mathbb{R}^d$. Well-posedness for singular initial data and existence of non-radial forward
We study the Hardy-Henon parabolic equations on $mathbb{R}^{N}$ ($N=2, 3$) under the effect of an additive fractional Brownian noise with Hurst parameter $H>maxleft(1/2, N/4right).$ We show local existence and uniqueness of a mid $L^{q}$-solution under suitable assumptions on $q$.
The initial value problem for the $L^{2}$ critical semilinear Schrodinger equation in $R^n, n geq 3$ is considered. We show that the problem is globally well posed in $H^{s}({Bbb R^{n}})$ when $1>s>frac{sqrt{7}-1}{3}$ for $n=3$, and when $1>s> frac{-
We prove global well-posedness for 3D Dirac equation with a concentrated nonlinearity.
This article is devoted to review the known results on global well-posedness for the Cauchy problem to the Kirchhoff equation and Kirchhoff systems with small data. Similar results will be obtained for the initial-boundary value problems in exterior