ﻻ يوجد ملخص باللغة العربية
On the three dimensional Euclidean space, for data with finite energy, it is well-known that the Maxwell-Klein-Gordon equations admit global solutions. However, the asymptotic behaviours of the solutions for the data with non-vanishing charge and arbitrary large size are unknown. It is conjectured that the solutions disperse as linear waves and enjoy the so-called peeling properties for pointwise estimates. We provide a gauge independent proof of the conjecture.
It is known that the Maxwell-Klein-Gordon equations in $mathbb{R}^{3+1}$ admit global solutions with finite energy data. In this paper, we present a new approach to study the asymptotic behavior of these global solutions. We show the quantitative ene
It has been shown in the authors companion paper that solutions of Maxwell-Klein-Gordon equations in $mathbb{R}^{3+1}$ possess some form of global strong decay properties with data bounded in some weighted energy space. In this paper, we prove pointw
We prove global existence backwards from the scattering data posed at infinity for the Maxwell Klein Gordon equations in Lorenz gauge satisfying the weak null condition. The asymptotics of the solutions to the Maxwell Klein Gordon equations in Lorenz
In this paper we prove uniqueness for an inverse boundary value problem (IBVP) arising in electrodynamics. We assume that the electromagnetic properties of the medium, namely the magnetic permeability, the electric permittivity and the conductivity,
We show that for a one-dimensional Schrodinger operator with a potential whose first moment is integrable the scattering matrix is in the unital Wiener algebra of functions with integrable Fourier transforms. Then we use this to derive dispersion est