ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of Decay Modes in Transfermium Isotopes

64   0   0.0 ( 0 )
 نشر من قبل Gaurav Saxena
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the unknown territory of transfermium nuclei, the relativistic mean-field (RMF) theory has been applied to probe decay modes which include $alpha$-decay, spontaneous fission (SF), and a less explored weak-decay. These decay modes are analyzed on equal footing for 101$leq$Z$leq$109 and as a consequence, the half-lives for weak-decay are indeed found comparable for several isotopes. Our prediction of decay modes and half-lives are found in excellent agreement with available experimental decay modes and half-lives along with the results of some other theories. Out of $alpha$, $beta^+$/EC, $beta^-$, and SF, the most probable decay mode is anticipated along with its half-life over a wide range of odd and even nuclei to frame a novel sight into terra incognita.



قيم البحث

اقرأ أيضاً

Transfermium nuclei (101$leq$Z$leq$110) are investigated thoroughly to describe structural properties viz. deformation, radii, shapes, magicity, etc. as well as their probable decay chains. These properties are explored using relativistic mean-field (RMF) approach and compared with other theories along with available experimental data. Neutron numbers N$=$152 and 162 have come forth with a deformed shell gap whereas N$=$184 is ensured as a spherical magic number. The region with N$>$168 bears witness of the phenomenon of shape transition and shape coexistence for all the considered isotopic chains. Experimental $alpha$-decay half-lives are compared with our theoretical half-lives obtained by using various empirical/semi-empirical formulas. The recent formula proposed by Manjunatha textit{et al.}, which results best among the considered 10 formulas, is further modified by adding asymmetry dependent terms ($I$ and $I^2$). This modified Manjunatha formula is utilized to predict probable $alpha$-decay chains that are found in excellent agreement with available experimental data.
We calculate the ground, first intrinsic excited states and density distribution for neutron-rich thorium and uranium isotopes, within the framework of relativistic mean field(RMF) approach using axially deformed basis. The total nucleon densities ar e calculated, from which the cluster-structures inside the parent nuclei are determined. The possible modes of decay, like {alpha}-decay and b{eta} -decay are analyzed. We find the neutron-rich isotopes are stable against {alpha}-decay, however they are very much unstable against b{eta} -decay. The life time of these nuclei predicted to be tens of second against b{eta} -decay.
The recent RCNP $(alpha, alpha)$ data on the Isoscalar Giant Monopole Resonance (ISGMR) and Isoscalar Giant Quadrupole Resonance (ISGQR) in $^{92,94,96,98,100}$Mo are analyzed within a fully self-consistent Quasiparticle Random Phase Approximation (Q RPA) approach with Skyrme interactions, in which pairing correlations and possible axial deformations are taken into account. The Skyrme sets SkM*, SLy6, SVbas and SkP$^{delta}$, that explore a diversity of nuclear matter properties, are used. We discuss the connection between the line shape of the monopole strength ISGMR and the deformation-induced coupling between the ISGMR and the $K=0$ branch of the ISGQR. The ISGMR centroid energy is best described by the force SkP$^{delta}$, having a low incompressibility $K_{infty}$ = 202 MeV. The ISGQR data are better reproduced by SVbas, that has large isoscalar effective mass $m^*/m$ = 0.9. The need of describing simultaneously the ISGMR and ISGQR data is stressed, with the requirement of suitable values of $K_infty$ and $m^*/m$. Possible extensions of the QRPA to deal with soft systems are also envisaged.
166 - O. V. Kiren 2013
Spontaneous fission and alpha decay are the main decay modes for superheavy nuclei. The superheavy nuclei which have small alpha decay half-life compared to spontaneous fission half-life will survive fission and can be detected in the laboratory thro ugh alpha decay. We have studied the alpha decay half-life and spontaneous half-life of some superheavy elements in the atomic range Z = 100-130. Spontaneous fission half-lives of superheavy nuclei have been calculated using the phenomenological formula and the alpha decay half-lives using Viola-Seaborg-Sobiczewski formula (Sobiczewski et al. 1989), semi empirical relation of Brown (1992) and formula based on generalized liquid drop model proposed by Dasgupta-Schubert and Reyes (2007). The results are reported here.
A realistic shell-model study is performed for neutron-deficient tin isotopes up to mass A=108. All shell-model ingredients, namely two-body matrix elements, single-particle energies, and effective charges for electric quadrupole transition operators , have been calculated by way of the many-body perturbation theory, starting from a low-momentum interaction derived from the high-precision CD-Bonn free nucleon-nucleon potential. The focus has been put on the enhanced quadrupole collectivity of these nuclei, which is testified by the observed large B(E2;0+ -> 2+)s. Our results evidence the crucial role played by the Z=50 cross-shell excitations that need to be taken into account explicitly to obtain a satisfactory theoretical description of light tin isotopes. We find also that a relevant contribution comes from the calculated neutron effective charges, whose magnitudes exceed the standard empirical values. An original double-step procedure has been introduced to reduce effectively the model space in order to overcome the computational problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا