ﻻ يوجد ملخص باللغة العربية
Transfermium nuclei (101$leq$Z$leq$110) are investigated thoroughly to describe structural properties viz. deformation, radii, shapes, magicity, etc. as well as their probable decay chains. These properties are explored using relativistic mean-field (RMF) approach and compared with other theories along with available experimental data. Neutron numbers N$=$152 and 162 have come forth with a deformed shell gap whereas N$=$184 is ensured as a spherical magic number. The region with N$>$168 bears witness of the phenomenon of shape transition and shape coexistence for all the considered isotopic chains. Experimental $alpha$-decay half-lives are compared with our theoretical half-lives obtained by using various empirical/semi-empirical formulas. The recent formula proposed by Manjunatha textit{et al.}, which results best among the considered 10 formulas, is further modified by adding asymmetry dependent terms ($I$ and $I^2$). This modified Manjunatha formula is utilized to predict probable $alpha$-decay chains that are found in excellent agreement with available experimental data.
We systematically determine ground-state and saddle-point shapes and masses for 1305 heavy and superheavy nuclei with $Z=98-126$ and $N=134-192$, including odd-$A$ and odd-odd systems. From these, we derive static fission barrier heights, one- and tw
Using HF+BCS method we study light nuclei with nuclear charge in the range $2 leq Z leq 8$ and lying near the neutron drip line. The HF method uses effective Skyrme forces and allows for axial deformations. We find that the neutron drip line forms st
In this paper, we analyze the structural properties of $Z=132$ and $Z=138$ superheavy nuclei within the ambit of axially deformed relativistic mean-field framework with NL$3^{*}$ parametrization and calculate the total binding energies, radii, quadru
In this work, we identify a unique and novel feature of central density depletion in both proton and neutron named as doubly bubble nuclei in 50$leq$Z(N)$leq$82 region. The major role of 2d-3s single-particle (s.p.) states in the existence of halo an
In this manuscript, we analyze the structural properties of $Z=119$ superheavy nuclei in the mass range of 284 $le$ A $le$ 375 within the framework of deformed relativistic mean field theory (RMF) and calculate the binding energy, radii, quadrupole d