ترغب بنشر مسار تعليمي؟ اضغط هنا

Isoscalar monopole and quadrupole modes in Mo isotopes: microscopic analysis

96   0   0.0 ( 0 )
 نشر من قبل Gianluca Col\\`o
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent RCNP $(alpha, alpha)$ data on the Isoscalar Giant Monopole Resonance (ISGMR) and Isoscalar Giant Quadrupole Resonance (ISGQR) in $^{92,94,96,98,100}$Mo are analyzed within a fully self-consistent Quasiparticle Random Phase Approximation (QRPA) approach with Skyrme interactions, in which pairing correlations and possible axial deformations are taken into account. The Skyrme sets SkM*, SLy6, SVbas and SkP$^{delta}$, that explore a diversity of nuclear matter properties, are used. We discuss the connection between the line shape of the monopole strength ISGMR and the deformation-induced coupling between the ISGMR and the $K=0$ branch of the ISGQR. The ISGMR centroid energy is best described by the force SkP$^{delta}$, having a low incompressibility $K_{infty}$ = 202 MeV. The ISGQR data are better reproduced by SVbas, that has large isoscalar effective mass $m^*/m$ = 0.9. The need of describing simultaneously the ISGMR and ISGQR data is stressed, with the requirement of suitable values of $K_infty$ and $m^*/m$. Possible extensions of the QRPA to deal with soft systems are also envisaged.



قيم البحث

اقرأ أيضاً

The isoscalar giant monopole, dipole, and quadrupole strength distributions have been deduced in $^{90, 92}$Zr, and $^{92}$Mo from background-free spectra of inelastic $alpha$-particle scattering at a beam energy of 385 MeV at extremely forward angle s, including 0$^{circ}$. These strength distributions were extracted by a multipole-decomposition analysis based on the expected angular distributions of the respective multipoles. All these strength distributions for the three nuclei practically coincide with each other, affirming that giant resonances, being collective phenomena, are not influenced by nuclear shell structure near $Asim$90, contrary to the claim in a recent measurement.
158 - Li-Gang Cao 2012
The isoscalar giant monopole resonance (ISGMR) in Cd, Sn and Pb isotopes has been studied within the self-consistent Skyrme Hartree-Fock+BCS and quasi-particle random phase approximation (QRPA). Three Skyrme parameter sets are used in the calculation s, i.e., SLy5, SkM* and SkP, since they are characterized by different values of the compression modulus in symmetric nuclear matter, namely K=230, 217, and 202 MeV, respectively. We also investigate the effect of different types of pairing forces on the ISGMR in Cd, Sn and Pb isotopes. The calculated peak energies and the strength distributions of ISGMR are compared with available experimental data. We find that SkP fails completely to describe the ISGMR strength distribution for all isotopes due to its low value of the nuclear matter incompressibility, namely K=202 MeV. On the other hand, the SLy5 parameter set, supplemented by an appropriate pairing interaction, gives a reasonable description of the ISGMR in Cd and Pb isotopes. A better description of ISGMR in Sn isotopes is achieved by the SkM* interaction, that has a somewhat softer value of the nuclear incompressibility.
129 - S. Shin , B. Zhou , M. Kimura 2021
To identify the 3alpha BEC state with the excess neutron, we have investigated the monopole strength of the excited states of 13C by using the theoretical framework of the real-time evolution method. The calculations have revealed several candidates of the Hoyle-analog states in a highly excited region.
Nuclei in the $sd$-shell demonstrate a remarkable interplay of cluster and mean-field phenomena. The $N=Z$ nuclei, such as $^{24}$Mg and $^{28}$Si, have been the focus of the theoretical study of both these phenomena in the past. The cluster and vort ical mean-field phenomena can be probed by excitation of isoscalar monopole and dipole states in scattering of isoscalar particles such as deuterons or $alpha$ particles. Inelastically scattered $alpha$ particles were momentum-analysed in the K600 magnetic spectrometer at iThemba LABS, Cape Town, South Africa. The scattered particles were detected in two multi-wire drift chambers and two plastic scintillators placed at the focal plane of the K600. In the theoretical discussion, the QRPA and AMD+GCM were used. The QRPA calculations lead us to conclude that: i) the mean-field vorticity appears mainly in dipole states with $K=1$, ii) the dipole (monopole) states should have strong deformation-induced octupole (quadrupole) admixtures, and iii) that near the $alpha$-particle threshold, there should exist a collective state (with $K=0$ for prolate nuclei and $K=1$ for oblate nuclei) with an impressive octupole strength. The results of the AMD+GCM calculations suggest that some observed states may have a mixed (mean-field + cluster) character or correspond to particular cluster configurations. A tentative correspondence between observed states and theoretical states from QRPA and AMD+GCM was established. The QRPA and AMD+GCM analysis shows that low-energy isoscalar dipole states combine cluster and mean-field properties. The QRPA calculations show that the low-energy vorticity is well localized in $^{24}$Mg, fragmented in $^{26}$Mg, and absent in $^{28}$Si.
The longstanding problem of characterization of the $0^+_2$ states in Gd isotopes is revisited by adopting the Nilsson$+$BCS mean field and the random-phase approximation. The interband electric quadrupole transition strengths varying almost two orde rs of magnitude are nicely reproduced at the same time as other observables. These results indicate that the $0^+_2$ states, in particular, those in lighter isotopes are well described as $beta$ vibrations excited on top of deformed ground states without recourse to the shape-coexistence picture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا