ﻻ يوجد ملخص باللغة العربية
We show that the valley Chern number of the low energy band in twisted double bilayer graphene can be tuned through two successive topological transitions, where the direct bandgap closes, by changing the electric field perpendicular to the plane of the graphene layers. The two transitions with Chern number changes of -3 and +1 can be explained by the formation of three satellite Dirac points around the central Dirac cone in the moire Brillouin zone due to the presence of trigonal warping. The satellite cones have opposite chirality to the central Dirac cone. Considering the overlap of the bands in energy, which lead to metallic states, we construct the experimentally observable phase diagram of the system in terms of the indirect bandgap and the anomalous valley Hall conductivity. We show that while most of the intermediate phase becomes metallic, there is a narrow parameter regime where the transition through three insulating phases with different quantized valley Hall conductivity can be seen. We systematically study the effects of variations in the model parameters on the phase diagram of the system to reveal the importance of particle-hole asymmetry and trigonal warping in constructing the phase diagram. We also study the effect of changes in interlayer tunneling on this phase diagram.
We calculate the form of quasiparticle interference patterns in bilayer graphene within a low-energy description, taking into account perturbatively the trigonal warping terms. We introduce four different types of impurities localized on the A and B
Topological insulators realized in materials with strong spin-orbit interactions challenged the long-held view that electronic materials are classified as either conductors or insulators. The emergence of controlled, two-dimensional moire patterns ha
We study the superlattice minibands produced by the interplay between moire pattern induced by hexagonal BN substrate on graphene layer and the interlayer coupling in bilayer graphene with Bernal stacking (BLG). We compare moire miniband features in
Flatbands with extremely narrow bandwidths on the order of a few mili-electron volts can appear in twisted multilayer graphene systems for appropriate system parameters. Here we investigate the electronic structure of a twisted bi-bilayer graphene, o
We discuss plasmons of biased twisted bilayer graphene when the Fermi level lies inside the gap. The collective excitations are a network of chiral edge plasmons (CEP) entirely composed of excitations in the topological electronic edge states (EES) t