ﻻ يوجد ملخص باللغة العربية
Topological insulators realized in materials with strong spin-orbit interactions challenged the long-held view that electronic materials are classified as either conductors or insulators. The emergence of controlled, two-dimensional moire patterns has opened new vistas in the topological materials landscape. Here we report on evidence, obtained by combining thermodynamic measurements, local and non-local transport measurements, and theoretical calculations, that robust topologically non-trivial, valley Chern insulators occur at charge neutrality in twisted double-bilayer graphene (TDBG). These time reversal-conserving valley Chern insulators are enabled by valley-number conservation, a symmetry that emerges from the moire pattern. The thermodynamic gap extracted from chemical potential measurements proves that TDBG is a bulk insulator under transverse electric field, while transport measurements confirm the existence of conducting edge states. A Landauer-Buttiker analysis of measurements on multi-terminal samples allows us to quantitatively assess edge state scattering and demonstrate that it does not destroy the edge states, leaving the bulk-boundary correspondence largely intact.
When twisted to angles near 1{deg}, graphene multilayers provide a new window on electron correlation physics by hosting gate-tuneable strongly-correlated states, including insulators, superconductors, and unusual magnets. Here we report the discover
A variety of correlated phases have recently emerged in select twisted van der Waals (vdW) heterostructures owing to their flat electronic dispersions. In particular, heterostructures of twisted double bilayer graphene (tDBG) manifest electric field-
We have studied the dielectric screening of electric field which is induced by a gate voltage in twisted double bilayer graphene by using a sample with a mismatch angle of about 5 degrees. In low temperature magnetotransport measurements, quantum osc
Twisted double bilayer graphene (TDBG) is an electric-field-tunable moire system, exhibiting electron correlated states and related temperature linear (T-linear) resistivity. The displacement field provides a new knob to in-situ tune the relative str
We use temperature-dependent resistivity in small-angle twisted double bilayer graphene to measure bandwidths and gaps of the bands. This electron-hole asymmetric system has one set of non-dispersing bands that splits into two flat bands with the ele