ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasiparticle interference patterns in bilayer graphene with trigonal warping

59   0   0.0 ( 0 )
 نشر من قبل Vardan Kaladzhyan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the form of quasiparticle interference patterns in bilayer graphene within a low-energy description, taking into account perturbatively the trigonal warping terms. We introduce four different types of impurities localized on the A and B sublattices of the first and the second layer, and we obtain closed-form analytical expressions both in real and Fourier spaces for the oscillatory corrections to the local density of states generated by the impurities. Finally, we compare our findings with recent experimental and semi-analytical T-matrix results from arXiv:2104.10620 and we show that there is a very good agreement between our findings and the previous results, as well as with the experimental data.



قيم البحث

اقرأ أيضاً

We use an exact analytical technique [Phys. Rev. B textbf{101}, 115405 (2020), Phys. Rev. B textbf{102}, 165117 (2020)] to recover the surface Greens functions for Bernal (ABA) and rhombohedral (ABC) graphite. For rhombohedral graphite we recover the predicted surface flat bands. For Bernal graphite we find that the surface state spectral function is similar to the bilayer one, but the trigonal warping effects are enhanced, and the surface quasiparticles have a much shorter lifetime. We subsequently use the T-matrix formalism to study the quasiparticle interference patterns generated on the surface of semi-infinite ABA and ABC graphite in the presence of impurity scattering. We compare our predictions to experimental STM data of impurity-localized states on the surface of Bernal graphite which appear to be in a good agreement with our calculations.
We study the superlattice minibands produced by the interplay between moire pattern induced by hexagonal BN substrate on graphene layer and the interlayer coupling in bilayer graphene with Bernal stacking (BLG). We compare moire miniband features in BLG, where they are affected by the interlayer asymmetry of BLG-hBN heterostructure and trigonal warping characteristic for electrons in Bernal-stacked bilayers with those found in monolayer graphene.
The existence of strong trigonal warping around the K point for the low energy electronic states in multilayer (N$geq$2) graphene films and graphite is well established. It is responsible for phenomena such as Lifshitz transitions and anisotropic bal listic transport. The absolute orientation of the trigonal warping with respect to the center of the Brillouin zone is however not agreed upon. Here, we use quasiparticle scattering experiments on a gated bilayer graphene/hexagonal boron nitride heterostructure to settle this disagreement. We compare Fourier transforms of scattering interference maps acquired at various energies away from the charge neutrality point with tight-binding-based joint density of states simulations. This comparison enables unambiguous determination of the trigonal warping orientation for bilayer graphene low energy states. Our experimental technique is promising for quasi-directly studying fine features of the band structure of gated two-dimensional materials such as topological transitions, interlayer hybridization, and moire minibands.
We show that the valley Chern number of the low energy band in twisted double bilayer graphene can be tuned through two successive topological transitions, where the direct bandgap closes, by changing the electric field perpendicular to the plane of the graphene layers. The two transitions with Chern number changes of -3 and +1 can be explained by the formation of three satellite Dirac points around the central Dirac cone in the moire Brillouin zone due to the presence of trigonal warping. The satellite cones have opposite chirality to the central Dirac cone. Considering the overlap of the bands in energy, which lead to metallic states, we construct the experimentally observable phase diagram of the system in terms of the indirect bandgap and the anomalous valley Hall conductivity. We show that while most of the intermediate phase becomes metallic, there is a narrow parameter regime where the transition through three insulating phases with different quantized valley Hall conductivity can be seen. We systematically study the effects of variations in the model parameters on the phase diagram of the system to reveal the importance of particle-hole asymmetry and trigonal warping in constructing the phase diagram. We also study the effect of changes in interlayer tunneling on this phase diagram.
We report the first experimental study of the quantum interference correction to the conductivity of bilayer graphene. Low-field, positive magnetoconductivity due to the weak localisation effect is investigated at different carrier densities, includi ng those around the electroneutrality region. Unlike conventional 2D systems, weak localisation in bilayer graphene is affected by elastic scattering processes such as intervalley scattering. Analysis of the dephasing determined from the magnetoconductivity is complemented by a study of the field- and density-dependent fluctuations of the conductance. Good agreement in the value of the coherence length is found between these two studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا