ترغب بنشر مسار تعليمي؟ اضغط هنا

Infant-ID: Fingerprints for Global Good

112   0   0.0 ( 0 )
 نشر من قبل Joshua Engelsma
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In many of the least developed and developing countries, a multitude of infants continue to suffer and die from vaccine-preventable diseases and malnutrition. Lamentably, the lack of official identification documentation makes it exceedingly difficult to track which infants have been vaccinated and which infants have received nutritional supplements. Answering these questions could prevent this infant suffering and premature death around the world. To that end, we propose Infant-Prints, an end-to-end, low-cost, infant fingerprint recognition system. Infant-Prints is comprised of our (i) custom built, compact, low-cost (85 USD), high-resolution (1,900 ppi), ergonomic fingerprint reader, and (ii) high-resolution infant fingerprint matcher. To evaluate the efficacy of Infant-Prints, we collected a longitudinal infant fingerprint database captured in 4 different sessions over a 12-month time span (December 2018 to January 2020), from 315 infants at the Saran Ashram Hospital, a charitable hospital in Dayalbagh, Agra, India. Our experimental results demonstrate, for the first time, that Infant-Prints can deliver accurate and reliable recognition (over time) of infants enrolled between the ages of 2-3 months, in time for effective delivery of vaccinations, healthcare, and nutritional supplements (TAR=95.2% @ FAR = 1.0% for infants aged 8-16 weeks at enrollment and authenticated 3 months later).



قيم البحث

اقرأ أيضاً

Standard losses for training deep segmentation networks could be seen as individual classifications of pixels, instead of supervising the global shape of the predicted segmentations. While effective, they require exact knowledge of the label of each pixel in an image. This study investigates how effective global geometric shape descriptors could be, when used on their own as segmentation losses for training deep networks. Not only interesting theoretically, there exist deeper motivations to posing segmentation problems as a reconstruction of shape descriptors: Annotations to obtain approximations of low-order shape moments could be much less cumbersome than their full-mask counterparts, and anatomical priors could be readily encoded into invariant shape descriptions, which might alleviate the annotation burden. Also, and most importantly, we hypothesize that, given a task, certain shape descriptions might be invariant across image acquisition protocols/modalities and subject populations, which might open interesting research avenues for generalization in medical image segmentation. We introduce and formulate a few shape descriptors in the context of deep segmentation, and evaluate their potential as standalone losses on two different challenging tasks. Inspired by recent works in constrained optimization for deep networks, we propose a way to use those descriptors to supervise segmentation, without any pixel-level label. Very surprisingly, as little as 4 descriptors values per class can approach the performance of a segmentation mask with 65k individual discrete labels. We also found that shape descriptors can be a valid way to encode anatomical priors about the task, enabling to leverage expert knowledge without additional annotations. Our implementation is publicly available and can be easily extended to other tasks and descriptors: https://github.com/hkervadec/shape_descriptors
When inspiring software developers to contribute to open source software, the act is often referenced as an opportunity to build tools to support the developer community. However, that is not the only charge that propels contributions -- growing inte rest in open source has also been attributed to software developers deciding to use their technical skills to benefit a common societal good. To understand how developers identify these projects, their motivations for contributing, and challenges they face, we conducted 21 semi-structured interviews with OSS for Social Good (OSS4SG) contributors. From our interview analysis, we identified themes of contribution styles that we wanted to understand at scale by deploying a survey to over 5765 OSS and Open Source Software for Social Good contributors. From our quantitative analysis of 517 responses, we find that the majority of contributors demonstrate a distinction between OSS4SG and OSS. Likewise, contributors described definitions based on what societal issue the project was to mitigate and who the outcomes of the project were going to benefit. In addition, we find that OSS4SG contributors focus less on benefiting themselves by padding their resume with new technology skills and are more interested in leaving their mark on society at statistically significant levels. We also find that OSS4SG contributors evaluate the owners of the project significantly more than OSS contributors. These findings inform implications to help contributors identify high societal impact projects, help project maintainers reduce barriers to entry, and help organizations understand why contributors are drawn to these projects to sustain active participation.
Person search aims at localizing and identifying a query person from a gallery of uncropped scene images. Different from person re-identification (re-ID), its performance also depends on the localization accuracy of a pedestrian detector. The state-o f-the-art methods train the detector individually, and the detected bounding boxes may be sub-optimal for the following re-ID task. To alleviate this issue, we propose a re-ID driven localization refinement framework for providing the refined detection boxes for person search. Specifically, we develop a differentiable ROI transform layer to effectively transform the bounding boxes from the original images. Thus, the box coordinates can be supervised by the re-ID training other than the original detection task. With this supervision, the detector can generate more reliable bounding boxes, and the downstream re-ID model can produce more discriminative embeddings based on the refined person localizations. Extensive experimental results on the widely used benchmarks demonstrate that our proposed method performs favorably against the state-of-the-art person search methods.
The vehicle re-identification (ReID) plays a critical role in the perception system of autonomous driving, which attracts more and more attention in recent years. However, to our best knowledge, there is no existing complete solution for the surround -view system mounted on the vehicle. In this paper, we argue two main challenges in above scenario: i) In single camera view, it is difficult to recognize the same vehicle from the past image frames due to the fisheye distortion, occlusion, truncation, etc. ii) In multi-camera view, the appearance of the same vehicle varies greatly from different cameras viewpoints. Thus, we present an integral vehicle Re-ID solution to address these problems. Specifically, we propose a novel quality evaluation mechanism to balance the effect of tracking boxs drift and targets consistency. Besides, we take advantage of the Re-ID network based on attention mechanism, then combined with a spatial constraint strategy to further boost the performance between different cameras. The experiments demonstrate that our solution achieves state-of-the-art accuracy while being real-time in practice. Besides, we will release the code and annotated fisheye dataset for the benefit of community.
Deep learning-based person re-identification (Re-ID) has made great progress and achieved high performance recently. In this paper, we make the first attempt to examine the vulnerability of current person Re-ID models against a dangerous attack metho d, ie, the universal adversarial perturbation (UAP) attack, which has been shown to fool classification models with a little overhead. We propose a emph{more universal} adversarial perturbation (MUAP) method for both image-agnostic and model-insensitive person Re-ID attack. Firstly, we adopt a list-wise attack objective function to disrupt the similarity ranking list directly. Secondly, we propose a model-insensitive mechanism for cross-model attack. Extensive experiments show that the proposed attack approach achieves high attack performance and outperforms other state of the arts by large margin in cross-model scenario. The results also demonstrate the vulnerability of current Re-ID models to MUAP and further suggest the need of designing more robust Re-ID models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا