ﻻ يوجد ملخص باللغة العربية
Standard losses for training deep segmentation networks could be seen as individual classifications of pixels, instead of supervising the global shape of the predicted segmentations. While effective, they require exact knowledge of the label of each pixel in an image. This study investigates how effective global geometric shape descriptors could be, when used on their own as segmentation losses for training deep networks. Not only interesting theoretically, there exist deeper motivations to posing segmentation problems as a reconstruction of shape descriptors: Annotations to obtain approximations of low-order shape moments could be much less cumbersome than their full-mask counterparts, and anatomical priors could be readily encoded into invariant shape descriptions, which might alleviate the annotation burden. Also, and most importantly, we hypothesize that, given a task, certain shape descriptions might be invariant across image acquisition protocols/modalities and subject populations, which might open interesting research avenues for generalization in medical image segmentation. We introduce and formulate a few shape descriptors in the context of deep segmentation, and evaluate their potential as standalone losses on two different challenging tasks. Inspired by recent works in constrained optimization for deep networks, we propose a way to use those descriptors to supervise segmentation, without any pixel-level label. Very surprisingly, as little as 4 descriptors values per class can approach the performance of a segmentation mask with 65k individual discrete labels. We also found that shape descriptors can be a valid way to encode anatomical priors about the task, enabling to leverage expert knowledge without additional annotations. Our implementation is publicly available and can be easily extended to other tasks and descriptors: https://github.com/hkervadec/shape_descriptors
Face anti-spoofing (FAS) plays a vital role in securing face recognition systems from the presentation attacks (PAs). As more and more realistic PAs with novel types spring up, it is necessary to develop robust algorithms for detecting unknown attack
A face morphing attack image can be verified to multiple identities, making this attack a major vulnerability to processes based on identity verification, such as border checks. Different methods have been proposed to detect face morphing attacks, ho
This paper presents a novel technique for skin colour segmentation that overcomes the limitations faced by existing techniques such as Colour Range Thresholding. Skin colour segmentation is affected by the varied skin colours and surrounding lighting
As a proposal-free approach, instance segmentation through pixel embedding learning and clustering is gaining more emphasis. Compared with bounding box refinement approaches, such as Mask R-CNN, it has potential advantages in handling complex shapes
Existing studies in weakly-supervised semantic segmentation (WSSS) using image-level weak supervision have several limitations: sparse object coverage, inaccurate object boundaries, and co-occurring pixels from non-target objects. To overcome these c