ترغب بنشر مسار تعليمي؟ اضغط هنا

On two extensions of Poncelet theorem

111   0   0.0 ( 0 )
 نشر من قبل Ciro Ciliberto
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Ciro Ciliberto




اسأل ChatGPT حول البحث

In this note I provide two extensions of a particular case of the classical Poncelet theorem.



قيم البحث

اقرأ أيضاً

A cone spherical metric is called irreducible if any developing map of the metric does not have monodromy in ${rm U(1)}$. By using the theory of indigenous bundles, we construct on a compact Riemann surface $X$ of genus $g_X geq 1$ a canonical surjec tive map from the moduli space of stable extensions of two line bundles to that of irreducible metrics with cone angles in $2 pi mathbb{Z}_{>1}$, which is generically injective in the algebro-geometric sense as $g_X geq 2$. As an application, we prove the following two results about irreducible metrics: $bullet$ as $g_X geq 2$ and $d$ is even and greater than $12g_X - 7$, the effective divisors of degree $d$ which could be represented by irreducible metrics form an arcwise connected Borel subset of Hausdorff dimension $geq 2(d+3-3g_X)$ in ${rm Sym}^d(X)$; $bullet$ as $g_X geq 1$, for almost every effective divisor $D$ of degree odd and greater than $2g_X-2$ on $X$, there exist finitely many cone spherical metrics representing $D$.
123 - Osamu Fujino 2021
The main purpose of this paper is to make Nakayamas theorem more accessible. We give a proof of Nakayamas theorem based on the negative definiteness of intersection matrices of exceptional curves. In this paper, we treat Nakayamas theorem on algebrai c varieties over any algebraically closed field of arbitrary characteristic although Nakayamas original statement is formulated for complex analytic spaces.
We give a new proof of Bradens theorem ([Br]) about emph{hyperbolic restrictions} of constructible sheaves/D-modules. The main geometric ingredient in the proof is a 1-parameter family that degenerates a given scheme Z equipped with a G_m-action to the product of the attractor and repeller loci.
129 - Daniel Barlet 2008
We prove the following two results 1. For a proper holomorphic function $ f : X to D$ of a complex manifold $X$ on a disc such that ${df = 0 } subset f^{-1}(0)$, we construct, in a functorial way, for each integer $p$, a geometric (a,b)-module $E ^p$ associated to the (filtered) Gauss-Manin connexion of $f$. This first theorem is an existence/finiteness result which shows that geometric (a,b)-modules may be used in global situations. 2. For any regular (a,b)-module $E$ we give an integer $N(E)$, explicitely given from simple invariants of $E$, such that the isomorphism class of $Ebig/b^{N(E)}.E$ determines the isomorphism class of $E$. This second result allows to cut asymptotic expansions (in powers of $b$) of elements of $E$ without loosing any information.
113 - Vladimir Drinfeld 2018
Let G be the Tate module of a p-divisble group H over a perfect field k of characteristic p. A theorem of Scholze-Weinstein describes G (and therefore H itself) in terms of the Dieudonne module of H; more precisely, it describes G(C) for good semiper fect k-algebras C (which is enough to reconstruct G). In these notes we give a self-contained proof of this theorem and explain the relation with the classical descriptions of the Dieudonne functor from Dieudonne modules to p-divisible groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا