ﻻ يوجد ملخص باللغة العربية
Let G be the Tate module of a p-divisble group H over a perfect field k of characteristic p. A theorem of Scholze-Weinstein describes G (and therefore H itself) in terms of the Dieudonne module of H; more precisely, it describes G(C) for good semiperfect k-algebras C (which is enough to reconstruct G). In these notes we give a self-contained proof of this theorem and explain the relation with the classical descriptions of the Dieudonne functor from Dieudonne modules to p-divisible groups.
Let $mathcal{X}$ be a regular projective arithmetic variety equipped with an ample hermitian line bundle $overline{mathcal{L}}$. We prove that the proportion of global sections $sigma$ with $leftlVert sigma rightrVert_{infty}<1$ of $overline{mathcal{
Given two semistable, non potentially isotrivial elliptic surfaces over a curve $C$ defined over a field of characteristic zero or finitely generated over its prime field, we show that any compatible family of effective isometries of the N{e}ron-Seve
Let $k$ be a field finitely generated over the finite field $mathbb F_p$ of odd characteristic $p$. For any K3 surface $X$ over $k$ we prove that the prime to $p$ component of the cokernel of the natural map $Br(k)to Br(X)$ is finite.
We introduce a novel approach to Bertini irreducibility theorems over an arbitrary field, based on random hyperplane slicing over a finite field. Extending a result of Benoist, we prove that for a morphism $phi colon X to mathbb{P}^n$ such that $X$ i