ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of Aflatoxin M1 by Fiber Cavity Attenuated Phase Shift Spectroscopy

65   0   0.0 ( 0 )
 نشر من قبل Imran Cheema
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aflatoxin M1 (AFM1) is a carcinogenic compound commonly found in milk in excess of the WHO permissible limit, especially in developing countries. Currently, state-of-the-art tests for detecting AFM1 in milk include chromatographic systems and enzyme-linked-immunosorbent assays. Although these tests provide fair accuracy and sensitivity however, they require trained laboratory personnel, expensive infrastructure, and many hours for producing final results. Optical sensors leveraging spectroscopy have a tremendous potential of providing an accurate, real time, and specialists-free AFM1 detector. Despite this, AFM1 sensing demonstrations using optical spectroscopy are still immature. Here, we demonstrate an optical sensor that employs the principle of cavity attenuated phase shift spectroscopy in optical fiber cavities for rapid AFM1 detection in aqueous solutions at 1550 nm. The sensor constitutes a cavity built by two fiber Bragg gratings. We splice a tapered fiber of $<$ 10 $mu$m waist inside the cavity as a sensing head. For ensuring specific binding of AFM1 in a solution, the tapered fiber is functionalized with DNA aptamers followed by validation of the conjugation via FTIR, TGA, and EDX analyses. We then detect AFM1 in a solution by measuring the phase shift between a sinusoidally modulated laser input and the sensor output at resonant frequencies of the cavity. Our results show that the sensor has the detection limit of 20 ng/L (20 ppt) which is well below both the US and the European safety regulations. We anticipate that the present work will lead towards a rapid and accurate AFM1 sensor, especially for low-resource settings.



قيم البحث

اقرأ أيضاً

186 - C. Sames , H. Chibani , C. Hamsen 2013
We investigate phase shifts in the strong coupling regime of single-atom cavity quantum electrodynamics (QED). On the light transmitted through the system, we observe a phase shift associated with an antiresonance and show that both its frequency and width depend solely on the atom, despite the strong coupling to the cavity. This shift is optically controllable and reaches 140 degrees - the largest ever reported for a single emitter. Our result offers a new technique for the characterization of complex integrated quantum circuits.
Liquid phase sensing applications at 1550~nm are highly desirable due to widely available off-the-shelf components. Generally, liquids at 1550~nm induce a high absorption loss that limits the overall sensors sensitivity and detection limit. One solut ion is to use an active fiber loop in conjunction with cavity ring down spectroscopy to overcome these absorption losses. However, the amplifier inside the fiber loop suffers from inherent gain fluctuations that limit the sensing systems overall performance. Here, we provide a novel sensor using the wavelength-scanned phase shift-cavity ring down spectroscopy (PS-CRDS) in conjunction with a linear active fiber cavity that potentially offers a more sensitive solution than traditional fiber loop sensors. We use a tapered fiber as a sensing head inside the active cavity built from fiber Bragg gratings. We derive a theoretical phase shift expression for our system and simulate it using the finite element method to determine optimum tapered fiber diameter for glucose sensing in DI water. Compared to a non-amplified system, we find that our amplified system can increase the sensitivity by fourteen times via the amplifier gain tuning. We also conduct experimental measurements using 0-15.5~mM glucose solutions and find them in excellent agreement with our theoretical predictions. Experimentally we obtain the sensors sensitivity of 0.768~$^o$/mM (1164~$^o$/RIU) and detection limit of 0.75~mM ( 4.5~$times$~10$^{-4}$~RIU) without any temperature stabilization in the system. We anticipate that the present work will find a wide range of sensing applications in fiber cavities, ring resonators, and other microcavity structures.
Optical resonant microcavities with ultra high quality factors are widely used for biosensing. Until now, the primary method of detection has been based upon tracking the resonant wavelength shift as a function of biodetection events. One of the sour ces of noise in all resonant-wavelength shift measurements is the noise due to intensity fluctuations of the laser source. An alternative approach is to track the change in the quality factor of the optical cavity by using phase shift cavity ring down spectroscopy, a technique which is insensitive to the intensity fluctuations of the laser source. Here, using biotinylated microtoroid resonant cavities, we show simultaneous measurement of the quality factor and the wavelength shift by using phase shift cavity ring down spectroscopy. These measurements were performed for disassociation phase of biotin-streptavidin reaction. We found that the disassociation curves are in good agreement with the previously published results. Hence, we demonstrate not only the application of phase shift cavity ring down spectroscopy to microcavities in the liquid phase but also simultaneous measurement of the quality factor and the wavelength shift for the microcavity biosensors in the application of kinetics measurements.
We apply the stochastic master equations (quantum filter) derived by Gough et al. (Proc. 50th IEEE Conference on Decision and Control, 2011) to a system consisting of a cavity driven by a multimode single photon field. In particular, we analyse the c onditional dynamics for the problem of cross phase modulation in a doubly resonant cavity. Through the exact integration of the stochastic equations, our results reveal features of the problem unavailable from previous models.
Label-free biosensors are important tools for clinical diagnostics and for studying biology at the single molecule level. The development of optical label-free sensors has allowed extreme sensitivity, but can expose the biological sample to photodama ge. Moreover, the fragility and complexity of these sensors can be prohibitive to applications. To overcome these problems, we develop a quantum noise limited exposed-core fiber sensor providing robust platform for label-free biosensing with a natural path toward microfluidic integration. We demonstrate the detection of single nanoparticles down to 25 nm in radius with optical intensities beneath known biophysical damage thresholds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا