ﻻ يوجد ملخص باللغة العربية
Label-free biosensors are important tools for clinical diagnostics and for studying biology at the single molecule level. The development of optical label-free sensors has allowed extreme sensitivity, but can expose the biological sample to photodamage. Moreover, the fragility and complexity of these sensors can be prohibitive to applications. To overcome these problems, we develop a quantum noise limited exposed-core fiber sensor providing robust platform for label-free biosensing with a natural path toward microfluidic integration. We demonstrate the detection of single nanoparticles down to 25 nm in radius with optical intensities beneath known biophysical damage thresholds.
While coherently-driven Kerr microcavities have rapidly matured as a platform for frequency comb formation, such microresonators generally possess weak Kerr coefficients; consequently, triggering comb generation requires millions of photons to be cir
Quantum technology requires the creation and control over single photons as an important resource. We present a single photon source based on a single molecule which is attached to the end-facet of an optical fiber. To realize a narrow linewidth, the
We report on the detection of free nanoparticles in a micromachined, open-access Fabry-Perot microcavity. With a mirror separation of $130,mu$m, a radius of curvature of $1.3,$mm, and a beam waist of $12,mu$m, the mode volume of our symmetric infrare
We present a technique for squeezed light detection based on direct imaging of the displaced-squeezed-vacuum state using a CCD camera. We show that the squeezing parameter can be accurately estimated using only the first two moments of the recorded p
We study experimentally the fundamental limits of sensitivity of an atomic radio-frequency magnetometer. First we apply an optimal sequence of state preparation, evolution, and the back-action evading measurement to achieve a nearly projection noise