ترغب بنشر مسار تعليمي؟ اضغط هنا

Cavity driven by a single photon: conditional dynamics and non-linear phase shift

172   0   0.0 ( 0 )
 نشر من قبل Andr\\'e Carvalho R. R.
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply the stochastic master equations (quantum filter) derived by Gough et al. (Proc. 50th IEEE Conference on Decision and Control, 2011) to a system consisting of a cavity driven by a multimode single photon field. In particular, we analyse the conditional dynamics for the problem of cross phase modulation in a doubly resonant cavity. Through the exact integration of the stochastic equations, our results reveal features of the problem unavailable from previous models.



قيم البحث

اقرأ أيضاً

It has been suggested that second-order nonlinearities could be used for quantum logic at the single-photon level. Specifically, successive two-photon processes in principle could accomplish the phase shift (conditioned on the presence of two photons in the low frequency modes) $ |011 rangle longrightarrow i|100 rangle longrightarrow -|011 rangle $. We have analyzed a recent scheme proposed by Xia et al. to induce such a conditional phase shift between two single-photon pulses propagating at different speeds through a nonlinear medium with a nonlocal response. We present here an analytical solution for the most general case, i.e. for an arbitrary response function, initial state, and pulse velocity, which supports their numerical observation that a $pi$ phase shift with unit fidelity is possible, in principle, in an appropriate limit. We also discuss why this is possible in this system, despite the theoretical objections to the possibility of conditional phase shifts on single photons that were raised some time ago by Shapiro and by one of us.
We theoretically analyse the efficiency of a quantum memory for single photons. The photons propagate along a transmission line and impinge on one of the mirrors of a high-finesse cavity. The quantum memory is constituted by a single atom within the optical resonator. Photon storage is realised by the controlled transfer of the photonic excitation into a metastable state of the atom and occurs via a Raman transition with a suitably tailored laser pulse, which drives the atom. Our study is supported by numerical simulations, in which we include the modes of the transmission line and we use the experimental parameters of existing experimental setups. It reproduces the results derived using input-output theory in the corresponding regime and can be extended to compute dynamics where the input-output formalism cannot be straightforwardly applied. Our analysis determines the maximal storage efficiency, namely, the maximal probability to store the photon in a stable atomic excitation, in the presence of spontaneous decay and cavity parasitic losses. It further delivers the form of the laser pulse that achieves the maximal efficiency by partially compensating parasitic losses. We numerically assess the conditions under which storage based on adiabatic dynamics is preferable to non-adiabatic pulses. Moreover, we systematically determine the shortest photon pulse that can be efficiently stored as a function of the system parameters.
We experimentally demonstrate the noiseless teleportation of a single photon by conditioning on quadrature Bell measurement results near the origin in phase space and thereby circumventing the photon loss that otherwise occurs even in optimal gain-tu ned continuous-variable quantum teleportation. In general, thanks to this loss suppression, the noiseless conditional teleportation can preserve the negativity of the Wigner function for an arbitrary pure input state and an arbitrary pure entangled resource state. In our experiment, the positive value of the Wigner function at the origin for the unconditional output state, W(0,0) = 0.015 $pm$ 0.001, becomes clearly negative after conditioning, W(0,0) = $-$0.025 $pm$ 0.005, illustrating the advantage of noiseless conditional teleportation.
111 - D. Pagel , H. Fehske 2017
We study the laser-driven Dicke model beyond the rotating-wave approximation. For weak coupling of the system to environmental degrees of freedom the dissipative dynamics of the emitter-cavity system is described by the Floquet master equation. Proje ction of the system evolution onto the emitter degrees of freedom results in non-Markovian behavior. We quantify the non-Markovianity of the resulting emitter dynamics and show that this quantity can be used as an indicator of the dissipative quantum phase transition occurring at high driving amplitudes.
We succeeded in measuring phase shift spectra of a microsphere cavity coupled with a tapered fiber using a weak coherent probe light at the single photon level. We utilized a tapered fiber with almost no depolarization and constructed a very stable p hase shift measurement scheme based on polarization analysis using photon counting. Using a very weak probe light (bar{n} = 0:41), we succeeded in observing the transition in the phase shift spectrum between undercoupling and overcoupling (at gap distances of 500 and 100 nm, respectively).We also used quantum state tomography to obtain a purity spectrum. Even in the overcoupling regime, the average purity was 0.982 pm 0.024 (minimum purity: 0.892), suggesting that the coherence of the fiber-microsphere system was well preserved. Based on these results, we believe this system is applicable to quantum phase gates using single light emitters such as diamond nitrogen vacancy centers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا