ترغب بنشر مسار تعليمي؟ اضغط هنا

EIS -- a family of activation functions combining Exponential, ISRU, and Softplus

118   0   0.0 ( 0 )
 نشر من قبل Koushik Biswas
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Activation functions play a pivotal role in the function learning using neural networks. The non-linearity in the learned function is achieved by repeated use of the activation function. Over the years, numerous activation functions have been proposed to improve accuracy in several tasks. Basic functions like ReLU, Sigmoid, Tanh, or Softplus have been favorite among the deep learning community because of their simplicity. In recent years, several novel activation functions arising from these basic functions have been proposed, which have improved accuracy in some challenging datasets. We propose a five hyper-parameters family of activation functions, namely EIS, defined as, [ frac{x(ln(1+e^x))^alpha}{sqrt{beta+gamma x^2}+delta e^{-theta x}}. ] We show examples of activation functions from the EIS family which outperform widely used activation functions on some well known datasets and models. For example, $frac{xln(1+e^x)}{x+1.16e^{-x}}$ beats ReLU by 0.89% in DenseNet-169, 0.24% in Inception V3 in CIFAR100 dataset while 1.13% in Inception V3, 0.13% in DenseNet-169, 0.94% in SimpleNet model in CIFAR10 dataset. Also, $frac{xln(1+e^x)}{sqrt{1+x^2}}$ beats ReLU by 1.68% in DenseNet-169, 0.30% in Inception V3 in CIFAR100 dataset while 1.0% in Inception V3, 0.15% in DenseNet-169, 1.13% in SimpleNet model in CIFAR10 dataset.



قيم البحث

اقرأ أيضاً

Deep learning at its core, contains functions that are composition of a linear transformation with a non-linear function known as activation function. In past few years, there is an increasing interest in construction of novel activation functions re sulting in better learning. In this work, we propose a family of novel activation functions, namely TanhSoft, with four undetermined hyper-parameters of the form tanh({alpha}x+{beta}e^{{gamma}x})ln({delta}+e^x) and tune these hyper-parameters to obtain activation functions which are shown to outperform several well known activation functions. For instance, replacing ReLU with xtanh(0.6e^x)improves top-1 classification accuracy on CIFAR-10 by 0.46% for DenseNet-169 and 0.7% for Inception-v3 while with tanh(0.87x)ln(1 +e^x) top-1 classification accuracy on CIFAR-100 improves by 1.24% for DenseNet-169 and 2.57% for SimpleNet model.
The scope of research in the domain of activation functions remains limited and centered around improving the ease of optimization or generalization quality of neural networks (NNs). However, to develop a deeper understanding of deep learning, it bec omes important to look at the non linear component of NNs more carefully. In this paper, we aim to provide a generic form of activation function along with appropriate mathematical grounding so as to allow for insights into the working of NNs in future. We propose Self-Learnable Activation Functions (SLAF), which are learned during training and are capable of approximating most of the existing activation functions. SLAF is given as a weighted sum of pre-defined basis elements which can serve for a good approximation of the optimal activation function. The coefficients for these basis elements allow a search in the entire space of continuous functions (consisting of all the conventional activations). We propose various training routines which can be used to achieve performance with SLAF equipped neural networks (SLNNs). We prove that SLNNs can approximate any neural network with lipschitz continuous activations, to any arbitrary error highlighting their capacity and possible equivalence with standard NNs. Also, SLNNs can be completely represented as a collections of finite degree polynomial upto the very last layer obviating several hyper parameters like width and depth. Since the optimization of SLNNs is still a challenge, we show that using SLAF along with standard activations (like ReLU) can provide performance improvements with only a small increase in number of parameters.
Note: This paper describes an older version of DeepLIFT. See https://arxiv.org/abs/1704.02685 for the newer version. Original abstract follows: The purported black box nature of neural networks is a barrier to adoption in applications where interpret ability is essential. Here we present DeepLIFT (Learning Important FeaTures), an efficient and effective method for computing importance scores in a neural network. DeepLIFT compares the activation of each neuron to its reference activation and assigns contribution scores according to the difference. We apply DeepLIFT to models trained on natural images and genomic data, and show significant advantages over gradient-based methods.
The mixture extension of exponential family principal component analysis (EPCA) was designed to encode much more structural information about data distribution than the traditional EPCA does. For example, due to the linearity of EPCAs essential form, nonlinear cluster structures cannot be easily handled, but they are explicitly modeled by the mixing extensions. However, the traditional mixture of local EPCAs has the problem of model redundancy, i.e., overlaps among mixing components, which may cause ambiguity for data clustering. To alleviate this problem, in this paper, a repulsiveness-encouraging prior is introduced among mixing components and a diversified EPCA mixture (DEPCAM) model is developed in the Bayesian framework. Specifically, a determinantal point process (DPP) is exploited as a diversity-encouraging prior distribution over the joint local EPCAs. As required, a matrix-valued measure for L-ensemble kernel is designed, within which, $ell_1$ constraints are imposed to facilitate selecting effective PCs of local EPCAs, and angular based similarity measure are proposed. An efficient variational EM algorithm is derived to perform parameter learning and hidden variable inference. Experimental results on both synthetic and real-world datasets confirm the effectiveness of the proposed method in terms of model parsimony and generalization ability on unseen test data.
Integrating discrete probability distributions and combinatorial optimization problems into neural networks has numerous applications but poses several challenges. We propose Implicit Maximum Likelihood Estimation (I-MLE), a framework for end-to-end learning of models combining discrete exponential family distributions and differentiable neural components. I-MLE is widely applicable: it only requires the ability to compute the most probable states; and does not rely on smooth relaxations. The framework encompasses several approaches, such as perturbation-based implicit differentiation and recent methods to differentiate through black-box combinatorial solvers. We introduce a novel class of noise distributions for approximating marginals via perturb-and-MAP. Moreover, we show that I-MLE simplifies to maximum likelihood estimation when used in some recently studied learning settings that involve combinatorial solvers. Experiments on several datasets suggest that I-MLE is competitive with and often outperforms existing approaches which rely on problem-specific relaxations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا