ﻻ يوجد ملخص باللغة العربية
The mixture extension of exponential family principal component analysis (EPCA) was designed to encode much more structural information about data distribution than the traditional EPCA does. For example, due to the linearity of EPCAs essential form, nonlinear cluster structures cannot be easily handled, but they are explicitly modeled by the mixing extensions. However, the traditional mixture of local EPCAs has the problem of model redundancy, i.e., overlaps among mixing components, which may cause ambiguity for data clustering. To alleviate this problem, in this paper, a repulsiveness-encouraging prior is introduced among mixing components and a diversified EPCA mixture (DEPCAM) model is developed in the Bayesian framework. Specifically, a determinantal point process (DPP) is exploited as a diversity-encouraging prior distribution over the joint local EPCAs. As required, a matrix-valued measure for L-ensemble kernel is designed, within which, $ell_1$ constraints are imposed to facilitate selecting effective PCs of local EPCAs, and angular based similarity measure are proposed. An efficient variational EM algorithm is derived to perform parameter learning and hidden variable inference. Experimental results on both synthetic and real-world datasets confirm the effectiveness of the proposed method in terms of model parsimony and generalization ability on unseen test data.
In photon-limited imaging, the pixel intensities are affected by photon count noise. Many applications, such as 3-D reconstruction using correlation analysis in X-ray free electron laser (XFEL) single molecule imaging, require an accurate estimation
This paper proposes a dual-supervised uncertainty inference (DS-UI) framework for improving Bayesian estimation-based uncertainty inference (UI) in deep neural network (DNN)-based image recognition. In the DS-UI, we combine the classifier of a DNN, i
Learning parameters from voluminous data can be prohibitive in terms of memory and computational requirements. We propose a compressive learning framework where we estimate model parameters from a sketch of the training data. This sketch is a collect
Variational autoencoders (VAEs) have been shown to be able to generate game levels but require manual exploration of the learned latent space to generate outputs with desired attributes. While conditional VAEs address this by allowing generation to b
Generative adversarial networks (GANs) learn the distribution of observed samples through a zero-sum game between two machine players, a generator and a discriminator. While GANs achieve great success in learning the complex distribution of image, so