ﻻ يوجد ملخص باللغة العربية
Deep learning at its core, contains functions that are composition of a linear transformation with a non-linear function known as activation function. In past few years, there is an increasing interest in construction of novel activation functions resulting in better learning. In this work, we propose a family of novel activation functions, namely TanhSoft, with four undetermined hyper-parameters of the form tanh({alpha}x+{beta}e^{{gamma}x})ln({delta}+e^x) and tune these hyper-parameters to obtain activation functions which are shown to outperform several well known activation functions. For instance, replacing ReLU with xtanh(0.6e^x)improves top-1 classification accuracy on CIFAR-10 by 0.46% for DenseNet-169 and 0.7% for Inception-v3 while with tanh(0.87x)ln(1 +e^x) top-1 classification accuracy on CIFAR-100 improves by 1.24% for DenseNet-169 and 2.57% for SimpleNet model.
Activation functions play a pivotal role in the function learning using neural networks. The non-linearity in the learned function is achieved by repeated use of the activation function. Over the years, numerous activation functions have been propose
We have proposed orthogonal-Pade activation functions, which are trainable activation functions and show that they have faster learning capability and improves the accuracy in standard deep learning datasets and models. Based on our experiments, we h
An activation function is a crucial component of a neural network that introduces non-linearity in the network. The state-of-the-art performance of a neural network depends on the perfect choice of an activation function. We propose two novel non-mon
Complementary metal oxide semiconductor (CMOS) devices display volatile characteristics, and are not well suited for analog applications such as neuromorphic computing. Spintronic devices, on the other hand, exhibit both non-volatile and analog featu
Class labels have been empirically shown useful in improving the sample quality of generative adversarial nets (GANs). In this paper, we mathematically study the properties of the current variants of GANs that make use of class label information. Wit