ﻻ يوجد ملخص باللغة العربية
Recent developments in machine learning have introduced models that approach human performance at the cost of increased architectural complexity. Efforts to make the rationales behind the models predictions transparent have inspired an abundance of new explainability techniques. Provided with an already trained model, they compute saliency scores for the words of an input instance. However, there exists no definitive guide on (i) how to choose such a technique given a particular application task and model architecture, and (ii) the benefits and drawbacks of using each such technique. In this paper, we develop a comprehensive list of diagnostic properties for evaluating existing explainability techniques. We then employ the proposed list to compare a set of diverse explainability techniques on downstream text classification tasks and neural network architectures. We also compare the saliency scores assigned by the explainability techniques with human annotations of salient input regions to find relations between a models performance and the agreement of its rationales with human ones. Overall, we find that the gradient-based explanations perform best across tasks and model architectures, and we present further insights into the properties of the reviewed explainability techniques.
Data augmentation aims to enrich training samples for alleviating the overfitting issue in low-resource or class-imbalanced situations. Traditional methods first devise task-specific operations such as Synonym Substitute, then preset the correspondin
In this paper, we introduce the prior knowledge, multi-scale structure, into self-attention modules. We propose a Multi-Scale Transformer which uses multi-scale multi-head self-attention to capture features from different scales. Based on the linguis
Recent years, the approaches based on neural networks have shown remarkable potential for sentence modeling. There are two main neural network structures: recurrent neural network (RNN) and convolution neural network (CNN). RNN can capture long term
This study proposes a Neural Attentive Bag-of-Entities model, which is a neural network model that performs text classification using entities in a knowledge base. Entities provide unambiguous and relevant semantic signals that are beneficial for cap
Inductive transfer learning has greatly impacted computer vision, but existing approaches in NLP still require task-specific modifications and training from scratch. We propose Universal Language Model Fine-tuning (ULMFiT), an effective transfer lear