ﻻ يوجد ملخص باللغة العربية
Recent years, the approaches based on neural networks have shown remarkable potential for sentence modeling. There are two main neural network structures: recurrent neural network (RNN) and convolution neural network (CNN). RNN can capture long term dependencies and store the semantics of the previous information in a fixed-sized vector. However, RNN is a biased model and its ability to extract global semantics is restricted by the fixed-sized vector. Alternatively, CNN is able to capture n-gram features of texts by utilizing convolutional filters. But the width of convolutional filters restricts its performance. In order to combine the strengths of the two kinds of networks and alleviate their shortcomings, this paper proposes Attention-based Multichannel Convolutional Neural Network (AMCNN) for text classification. AMCNN utilizes a bi-directional long short-term memory to encode the history and future information of words into high dimensional representations, so that the information of both the front and back of the sentence can be fully expressed. Then the scalar attention and vectorial attention are applied to obtain multichannel representations. The scalar attention can calculate the word-level importance and the vectorial attention can calculate the feature-level importance. In the classification task, AMCNN uses a CNN structure to cpture word relations on the representations generated by the scalar and vectorial attention mechanism instead of calculating the weighted sums. It can effectively extract the n-gram features of the text. The experimental results on the benchmark datasets demonstrate that AMCNN achieves better performance than state-of-the-art methods. In addition, the visualization results verify the semantic richness of multichannel representations.
In this paper, we introduce the prior knowledge, multi-scale structure, into self-attention modules. We propose a Multi-Scale Transformer which uses multi-scale multi-head self-attention to capture features from different scales. Based on the linguis
The massive growth of digital biomedical data is making biomedical text indexing and classification increasingly important. Accordingly, previous research has devised numerous deep learning techniques focused on using feedforward, convolutional or re
In this paper, we propose Stacked DeBERT, short for Stacked Denoising Bidirectional Encoder Representations from Transformers. This novel model improves robustness in incomplete data, when compared to existing systems, by designing a novel encoding s
Text classification is a critical research topic with broad applications in natural language processing. Recently, graph neural networks (GNNs) have received increasing attention in the research community and demonstrated their promising results on t
Recently, Deep Neural Networks (DNNs) have made remarkable progress for text classification, which, however, still require a large number of labeled data. To train high-performing models with the minimal annotation cost, active learning is proposed t