ترغب بنشر مسار تعليمي؟ اضغط هنا

Multichannel CNN with Attention for Text Classification

103   0   0.0 ( 0 )
 نشر من قبل Zhenyu Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent years, the approaches based on neural networks have shown remarkable potential for sentence modeling. There are two main neural network structures: recurrent neural network (RNN) and convolution neural network (CNN). RNN can capture long term dependencies and store the semantics of the previous information in a fixed-sized vector. However, RNN is a biased model and its ability to extract global semantics is restricted by the fixed-sized vector. Alternatively, CNN is able to capture n-gram features of texts by utilizing convolutional filters. But the width of convolutional filters restricts its performance. In order to combine the strengths of the two kinds of networks and alleviate their shortcomings, this paper proposes Attention-based Multichannel Convolutional Neural Network (AMCNN) for text classification. AMCNN utilizes a bi-directional long short-term memory to encode the history and future information of words into high dimensional representations, so that the information of both the front and back of the sentence can be fully expressed. Then the scalar attention and vectorial attention are applied to obtain multichannel representations. The scalar attention can calculate the word-level importance and the vectorial attention can calculate the feature-level importance. In the classification task, AMCNN uses a CNN structure to cpture word relations on the representations generated by the scalar and vectorial attention mechanism instead of calculating the weighted sums. It can effectively extract the n-gram features of the text. The experimental results on the benchmark datasets demonstrate that AMCNN achieves better performance than state-of-the-art methods. In addition, the visualization results verify the semantic richness of multichannel representations.



قيم البحث

اقرأ أيضاً

In this paper, we introduce the prior knowledge, multi-scale structure, into self-attention modules. We propose a Multi-Scale Transformer which uses multi-scale multi-head self-attention to capture features from different scales. Based on the linguis tic perspective and the analysis of pre-trained Transformer (BERT) on a huge corpus, we further design a strategy to control the scale distribution for each layer. Results of three different kinds of tasks (21 datasets) show our Multi-Scale Transformer outperforms the standard Transformer consistently and significantly on small and moderate size datasets.
152 - Bruce Nguyen , Shaoxiong Ji 2021
The massive growth of digital biomedical data is making biomedical text indexing and classification increasingly important. Accordingly, previous research has devised numerous deep learning techniques focused on using feedforward, convolutional or re current neural architectures. More recently, fine-tuned transformers-based pretrained models (PTMs) have demonstrated superior performance compared to such models in many natural language processing tasks. However, the direct use of PTMs in the biomedical domain is only limited to the target documents, ignoring the rich semantic information in the label descriptions. In this paper, we develop an improved label attention-based architecture to inject semantic label description into the fine-tuning process of PTMs. Results on two public medical datasets show that the proposed fine-tuning scheme outperforms the conventionally fine-tuned PTMs and prior state-of-the-art models. Furthermore, we show that fine-tuning with the label attention mechanism is interpretable in the interpretability study.
In this paper, we propose Stacked DeBERT, short for Stacked Denoising Bidirectional Encoder Representations from Transformers. This novel model improves robustness in incomplete data, when compared to existing systems, by designing a novel encoding s cheme in BERT, a powerful language representation model solely based on attention mechanisms. Incomplete data in natural language processing refer to text with missing or incorrect words, and its presence can hinder the performance of current models that were not implemented to withstand such noises, but must still perform well even under duress. This is due to the fact that current approaches are built for and trained with clean and complete data, and thus are not able to extract features that can adequately represent incomplete data. Our proposed approach consists of obtaining intermediate input representations by applying an embedding layer to the input tokens followed by vanilla transformers. These intermediate features are given as input to novel denoising transformers which are responsible for obtaining richer input representations. The proposed approach takes advantage of stacks of multilayer perceptrons for the reconstruction of missing words embeddings by extracting more abstract and meaningful hidden feature vectors, and bidirectional transformers for improved embedding representation. We consider two datasets for training and evaluation: the Chatbot Natural Language Understanding Evaluation Corpus and Kaggles Twitter Sentiment Corpus. Our model shows improved F1-scores and better robustness in informal/incorrect texts present in tweets and in texts with Speech-to-Text error in the sentiment and intent classification tasks.
Text classification is a critical research topic with broad applications in natural language processing. Recently, graph neural networks (GNNs) have received increasing attention in the research community and demonstrated their promising results on t his canonical task. Despite the success, their performance could be largely jeopardized in practice since they are: (1) unable to capture high-order interaction between words; (2) inefficient to handle large datasets and new documents. To address those issues, in this paper, we propose a principled model -- hypergraph attention networks (HyperGAT), which can obtain more expressive power with less computational consumption for text representation learning. Extensive experiments on various benchmark datasets demonstrate the efficacy of the proposed approach on the text classification task.
Recently, Deep Neural Networks (DNNs) have made remarkable progress for text classification, which, however, still require a large number of labeled data. To train high-performing models with the minimal annotation cost, active learning is proposed t o select and label the most informative samples, yet it is still challenging to measure informativeness of samples used in DNNs. In this paper, inspired by piece-wise linear interpretability of DNNs, we propose a novel Active Learning with DivErse iNterpretations (ALDEN) approach. With local interpretations in DNNs, ALDEN identifies linearly separable regions of samples. Then, it selects samples according to their diversity of local interpretations and queries their labels. To tackle the text classification problem, we choose the word with the most diverse interpretations to represent the whole sentence. Extensive experiments demonstrate that ALDEN consistently outperforms several state-of-the-art deep active learning methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا