ﻻ يوجد ملخص باللغة العربية
Data augmentation aims to enrich training samples for alleviating the overfitting issue in low-resource or class-imbalanced situations. Traditional methods first devise task-specific operations such as Synonym Substitute, then preset the corresponding parameters such as the substitution rate artificially, which require a lot of prior knowledge and are prone to fall into the sub-optimum. Besides, the number of editing operations is limited in the previous methods, which decreases the diversity of the augmented data and thus restricts the performance gain. To overcome the above limitations, we propose a framework named Text AutoAugment (TAA) to establish a compositional and learnable paradigm for data augmentation. We regard a combination of various operations as an augmentation policy and utilize an efficient Bayesian Optimization algorithm to automatically search for the best policy, which substantially improves the generalization capability of models. Experiments on six benchmark datasets show that TAA boosts classification accuracy in low-resource and class-imbalanced regimes by an average of 8.8% and 9.7%, respectively, outperforming strong baselines.
Recently, Deep Neural Networks (DNNs) have made remarkable progress for text classification, which, however, still require a large number of labeled data. To train high-performing models with the minimal annotation cost, active learning is proposed t
Meta-learning has achieved great success in leveraging the historical learned knowledge to facilitate the learning process of the new task. However, merely learning the knowledge from the historical tasks, adopted by current meta-learning algorithms,
Text classification systems will help to solve the text clustering problem in the Azerbaijani language. There are some text-classification applications for foreign languages, but we tried to build a newly developed system to solve this problem for th
Few-shot text classification is a fundamental NLP task in which a model aims to classify text into a large number of categories, given only a few training examples per category. This paper explores data augmentation -- a technique particularly suitab
Data augmentation is proven to be effective in many NLU tasks, especially for those suffering from data scarcity. In this paper, we present a powerful and easy to deploy text augmentation framework, Data Boost, which augments data through reinforceme