ﻻ يوجد ملخص باللغة العربية
We report on a comprehensive investigation of the effects of strain and film thickness on the structural and magnetic properties of epitaxial thin films of the prototypal $J_mathrm{eff}=1/2$ compound Sr$_2$IrO$_4$ by advanced X-ray scattering. We find that the Sr$_2$IrO$_4$ thin films can be grown fully strained up to a thickness of 108 nm. By using X-ray resonant scattering, we show that the out-of-plane magnetic correlation length is strongly dependent on the thin film thickness, but independent of the strain state of the thin films. This can be used as a finely tuned dial to adjust the out-of-plane magnetic correlation length and transform the magnetic anisotropy from two-dimensional (2D) to three-dimensional (3D) behavior by incrementing film thickness. These results provide a clearer picture for the systematic control of the magnetic degrees of freedom in epitaxial thin films of Sr$_2$IrO$_4$ and bring to light the potential for a rich playground to explore the physics of $5d$-transition metal compounds.
Thin films of the ferromagnetic metal SrRuO3 (SRO) show a varying easy magnetization axis depending on the epitaxial strain and undergo a metal-to-insulator transition with decreasing film thickness. We have investigated the magnetic properties of SR
$5d$ iridium oxides are of huge interest due to the potential for new quantum states driven by strong spin-orbit coupling. The strontium iridate Sr$_2$IrO$_4$ is particularly in the spotlight because of the so-called $j_text{eff}=1/2$ state consistin
Motivated by the success of experimental manipulation of the band structure through biaxial strain in Sr$_2$RuO$_4$ thin film grown on a mismatched substrate, we investigate theoretically the effects of biaxial strain on the electronic instabilities,
The anisotropic magnetic properties of Sr$_2$IrO$_4$ are investigated, using longitudinal and torque magnetometry. The critical scaling across $T_c$ of the longitudinal magnetization is the one expected for the 2D XY universality class. Modeling the
A structural transition in an ABO$_{3}$ perovskite thin film involving the change of the BO$_{6}$ octahedral rotation pattern can be hidden under the global lattice symmetry imposed by the substrate and often easily overlooked. We carried out high-re