ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetization density distribution of Sr$_2$IrO$_4$: Deviation from a local $j_text{eff}=1/2$ picture

113   0   0.0 ( 0 )
 نشر من قبل Philippe Bourges
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

$5d$ iridium oxides are of huge interest due to the potential for new quantum states driven by strong spin-orbit coupling. The strontium iridate Sr$_2$IrO$_4$ is particularly in the spotlight because of the so-called $j_text{eff}=1/2$ state consisting of a quantum superposition of the three local $t_{2g}$ orbitals with -- in its most simple version -- nearly equal population, which stabilizes an unconventional Mott insulating state. Here, we report an anisotropic and aspherical magnetization density distribution measured by polarized neutron diffraction in a magnetic field up to 5~T at 4~K, which strongly deviates from a local jeffHalf picture even when distortion-induced deviations from the equal weights of the orbital populations are taken into account. Once reconstructed by the maximum entropy method and multipole expansion model refinement, the magnetization density shows cross-shaped positive four lobes along the crystallographic tetragonal axes with a large spatial extent, showing that the $xy$ orbital contribution is dominant. The analogy to the superconducting copper oxide systems might then be weaker than commonly thought.



قيم البحث

اقرأ أيضاً

We present scanning tunneling microscopy and spectroscopy experiments on the novel J_eff = 1/2 Mott insulator Sr2IrO4. Local density of states (LDOS) measurements show an intrinsic insulating gap of 620 meV that is asymmetric about the Fermi level an d is larger than previously reported values. The size of this gap suggests that Sr2IrO4 is likely a Mott rather than Slater insulator. In addition, we found a small number of native defects which create in-gap spectral weight. Atomically resolved LDOS measurements on and off the defects shows that this energy gap is quite fragile. Together the extended nature of the 5d electrons and poor screening of defects help explain the elusive nature of this gap.
We show that, contrary to previous belief, the transition to the antiferromagnetic state of Sr$_2$IrO$_4$ in zero magnetic field does show up in the transverse resistivity. We attribute this to a change in transverse integrals associated to the magne tic ordering, which is evaluated considering hopping of the localized charge. The evolution of the resistivity anomaly associated to the magnetic transition under applied magnetic field is studied. It tracks the magnetic phase diagram, allowing to identify three different lines, notably the spin-flip line, associated with the reordering of the ferromagnetic component of the magnetization, and an intriguing line for field induced magnetism, also corroborated by magnetization measurements.
We investigate the temporal evolution of electronic states in strontium iridate Sr$_2$IrO$_4$. The time resolved photoemission spectra of intrinsic, electron doped and the hole doped samples are monitored in identical experimental conditions. Our dat a on intrinsic and electron doped samples, show that primary doublon-holon pairs relax near to the chemical potential on a timescale shorter than $70$ fs. The subsequent cooling of low energy excitations takes place in two step: a rapid dynamics of $cong120$ fs is followed by a slower decay of $cong 1$ ps. The reported timescales endorse the analogies between Sr$_2$IrO$_4$ and copper oxides.
We report on a comprehensive investigation of the effects of strain and film thickness on the structural and magnetic properties of epitaxial thin films of the prototypal $J_mathrm{eff}=1/2$ compound Sr$_2$IrO$_4$ by advanced X-ray scattering. We fin d that the Sr$_2$IrO$_4$ thin films can be grown fully strained up to a thickness of 108 nm. By using X-ray resonant scattering, we show that the out-of-plane magnetic correlation length is strongly dependent on the thin film thickness, but independent of the strain state of the thin films. This can be used as a finely tuned dial to adjust the out-of-plane magnetic correlation length and transform the magnetic anisotropy from two-dimensional (2D) to three-dimensional (3D) behavior by incrementing film thickness. These results provide a clearer picture for the systematic control of the magnetic degrees of freedom in epitaxial thin films of Sr$_2$IrO$_4$ and bring to light the potential for a rich playground to explore the physics of $5d$-transition metal compounds.
348 - D. Haskel , G. Fabbris , J. H. Kim 2019
The effect of compression on the magnetic ground state of Sr$_2$IrO$_4$ is studied with x-ray resonant techniques in the diamond anvil cell. The weak interlayer exchange coupling between square-planar 2D IrO$_2$ layers is readily modified upon compre ssion, with a crossover between magnetic structures around 7 GPa mimicking the effect of an applied magnetic field at ambient pressure. Higher pressures drive an order-disorder magnetic phase transition with no magnetic order detected above 17-20 GPa. The persistence of strong exchange interactions between $mathrm{J_{eff}}=1/2$ magnetic moments within the insulating IrO$_2$ layers up to at least 35 GPa points to a highly frustrated magnetic state in compressed Sr$_2$IrO$_4$ opening the door for realization of novel quantum paramagnetic phases driven by extended $5d$ orbitals with entangled spin and orbital degrees of freedom.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا