ﻻ يوجد ملخص باللغة العربية
Motivated by the success of experimental manipulation of the band structure through biaxial strain in Sr$_2$RuO$_4$ thin film grown on a mismatched substrate, we investigate theoretically the effects of biaxial strain on the electronic instabilities, such as superconductivity (SC) and spin density wave (SDW), by functional renormalization group. According to the experiment, the positive strain (from lattice expansion) causes charge transfer to the $gamma$-band and consequently Lifshitz reconstruction of the Fermi surface. Our theoretical calculations show that within a limited range of positive strain a p-wave superconducting order is realized. However, as the strain is increased further the system develops into the SDW state well before the Lifshitz transition is reached. We also consider the effect of negative strains (from lattice constriction). As the strain increases, there is a transition from p-wave SC state to nodal s-wave SC state. The theoretical results are discussed in comparison to experiment and can be checked by further experiments.
We measure the Shubnikov-de Haas effect in thin-film Sr$_2$RuO$_4$ grown on an (LaAlO$_3$)$_{0.29}$-(SrAl$_{1/2}$Ta$_{1/2}$O$_3$)$_{0.71}$ (LSAT) substrate. We detect all three known Fermi surfaces and extract the Fermi surface volumes, cyclotron eff
Sr$_2$RuO$_4$ is a leading candidate for chiral $p$-wave superconductivity. The detailed mechanism of superconductivity in this material is still the subject of intense investigations. Since superconductivity is sensitive to the topology of the Fermi
Unambiguous identification of the superconducting order parameter symmetry of Sr$_2$RuO$_4$ has remained elusive for more than a quarter century. While a chiral $p$-wave ground state analogue to superfluid $^3$He-$A$ was ruled out only very recently,
In conventional and high transition temperature copper oxide and iron pnictide superconductors, the Cooper pairs all have even parity. As a rare exception, Sr$_2$RuO$_4$ is the first prime candidate for topological chiral p-wave superconductivity, wh
We analyze the spin anisotropy of the magnetic susceptibility of Sr$_2$RuO$4$ in presence of spin-orbit coupling and anisotropic strain using quasi-two-dimensional tight-binding parametrization fitted to the ARPES results. Similar to the previous obs