ﻻ يوجد ملخص باللغة العربية
We demonstrate the operation of Josephson junction arrays (JJA) driven by optical pulses generated by a mode-locked laser and an optical time-division multiplexer. A commercial photodiode converts the optical pulses into electrical ones in liquid helium several cm from the JJA. The performance of our custom-made mode-locked laser is sufficient for driving a JJA with low critical current at multiple Shapiro steps. Our optical approach is a potential enabler for fast and energy-efficient pulse drive without expensive high-bandwidth electrical pulse pattern generator, and without high-bandwidth electrical cabling crossing temperature stages. Our measurements and simulations motivate an improved integration of photodiodes and JJAs using, e.g., flip-chip techniques, in order to improve both the understanding and fidelity of pulse-driven Josephson Arbitrary Waveform Synthesizers (JAWS).
We present the design, measurement and analysis of a current sensor based on a process of Josephson parametric upconversion in a superconducting microwave cavity. Terminating a coplanar waveguide with a nanobridge constriction Josephson junction, we
Coherent operation of gate-voltage-controlled hybrid transmon qubits (gatemons) based on semiconductor nanowires was recently demonstrated. Here we experimentally investigate the anharmonicity in epitaxial InAs-Al Josephson junctions, a key parameter
The ac Josephson effect in a ferromagnetic Josephson junction, which is composed of two superconductors separated by a ferromagnetic metal (FM), is studied by a tunneling Hamiltonian and Greens function method. We obtain two types of superconducting
We have studied mesoscopic Josephson junctions formed by highly $n$-doped InAs nanowires and superconducting Ti/Pb source and drain leads. The current-voltage properties of the system are investigated by varying temperature and external out-of-plane
We theoretically investigate the critical current of a thermally-biased SIS Josephson junction formed by electrodes made by different BCS superconductors. The response of the device is analyzed as a function of the asymmetry parameter, $r=T_{c_1} /T_