ﻻ يوجد ملخص باللغة العربية
We present the design, measurement and analysis of a current sensor based on a process of Josephson parametric upconversion in a superconducting microwave cavity. Terminating a coplanar waveguide with a nanobridge constriction Josephson junction, we observe modulation sidebands from the cavity that enable highly sensitive, frequency-multiplexed output of small currents for applications such as transition-edge sensor array readout. We derive an analytical model to reproduce the measurements over a wide range of bias currents, detunings and input powers. Tuning the frequency of the cavity by more than SI{100}{megahertz} with DC current, our device achieves a minimum current sensitivity of SI{8.9}{picoamperepersqrt{hertz}}. Extrapolating the results of our analytical model, we predict an improved device based on our platform, capable of achieving sensitivities down to SI{50}{femtoamperepersqrt{hertz}}}, or even lower if one could take advantage of parametric amplification in the Josephson cavity. Taking advantage of the Josephson architecture, our approach can provide higher sensitivity than kinetic inductance designs, and potentially enables detection of currents ultimately limited by quantum noise.
The ac Josephson effect in a ferromagnetic Josephson junction, which is composed of two superconductors separated by a ferromagnetic metal (FM), is studied by a tunneling Hamiltonian and Greens function method. We obtain two types of superconducting
We demonstrate the operation of Josephson junction arrays (JJA) driven by optical pulses generated by a mode-locked laser and an optical time-division multiplexer. A commercial photodiode converts the optical pulses into electrical ones in liquid hel
We perform extensive analysis of graphene Josephson junctions embedded in microwave circuits. By comparing a diffusive junction at 15 mK with a ballistic one at 15 mK and 1 K, we are able to reconstruct the current-phase relation.
We investigate the coherent energy and thermal transport in a temperature-biased long Josephson tunnel junction, when a Josephson vortex, i.e., a soliton, steadily drifts driven by an electric bias current. We demonstrate that thermal transport throu
Short ballistic graphene Josephson junctions sustain superconducting current with a non-sinusoidal current-phase relation up to a critical current threshold. The current-phase relation, arising from proximitized superconductivity, is gate-voltage tun