ترغب بنشر مسار تعليمي؟ اضغط هنا

Current detection using a Josephson parametric upconverter

173   0   0.0 ( 0 )
 نشر من قبل Felix E. Schmidt
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the design, measurement and analysis of a current sensor based on a process of Josephson parametric upconversion in a superconducting microwave cavity. Terminating a coplanar waveguide with a nanobridge constriction Josephson junction, we observe modulation sidebands from the cavity that enable highly sensitive, frequency-multiplexed output of small currents for applications such as transition-edge sensor array readout. We derive an analytical model to reproduce the measurements over a wide range of bias currents, detunings and input powers. Tuning the frequency of the cavity by more than SI{100}{megahertz} with DC current, our device achieves a minimum current sensitivity of SI{8.9}{picoamperepersqrt{hertz}}. Extrapolating the results of our analytical model, we predict an improved device based on our platform, capable of achieving sensitivities down to SI{50}{femtoamperepersqrt{hertz}}}, or even lower if one could take advantage of parametric amplification in the Josephson cavity. Taking advantage of the Josephson architecture, our approach can provide higher sensitivity than kinetic inductance designs, and potentially enables detection of currents ultimately limited by quantum noise.



قيم البحث

اقرأ أيضاً

194 - S. Hikino , M. Mori , S. Takahashi 2009
The ac Josephson effect in a ferromagnetic Josephson junction, which is composed of two superconductors separated by a ferromagnetic metal (FM), is studied by a tunneling Hamiltonian and Greens function method. We obtain two types of superconducting phase dependent current, i.e., Josephson current and quasiparticle-pair-interference current (QPIC). These currents change their signs with thickness of the FM layer due to the 0-$pi$ transition characteristic to the ferromagnetic Josephson junction. As a function of applied voltage, the Josephson critical current shows a logarithmic divergence called the Riedel peak at the gap voltage, while the QPIC shows a discontinuous jump. The Riedel peak reverses due to the 0-$pi$ transition and disappears near the 0-$pi$ transition point. The discontinuous jump in the QPIC also represents similar behaviors to the Riedel peak. These results are in contrast to the conventional ones.
We demonstrate the operation of Josephson junction arrays (JJA) driven by optical pulses generated by a mode-locked laser and an optical time-division multiplexer. A commercial photodiode converts the optical pulses into electrical ones in liquid hel ium several cm from the JJA. The performance of our custom-made mode-locked laser is sufficient for driving a JJA with low critical current at multiple Shapiro steps. Our optical approach is a potential enabler for fast and energy-efficient pulse drive without expensive high-bandwidth electrical pulse pattern generator, and without high-bandwidth electrical cabling crossing temperature stages. Our measurements and simulations motivate an improved integration of photodiodes and JJAs using, e.g., flip-chip techniques, in order to improve both the understanding and fidelity of pulse-driven Josephson Arbitrary Waveform Synthesizers (JAWS).
We perform extensive analysis of graphene Josephson junctions embedded in microwave circuits. By comparing a diffusive junction at 15 mK with a ballistic one at 15 mK and 1 K, we are able to reconstruct the current-phase relation.
We investigate the coherent energy and thermal transport in a temperature-biased long Josephson tunnel junction, when a Josephson vortex, i.e., a soliton, steadily drifts driven by an electric bias current. We demonstrate that thermal transport throu gh the junction can be controlled by the bias current, since it determines the steady-state velocity of the drifting soliton. We study the effects on thermal transport of the damping affecting the soliton dynamics. In fact, a soliton locally influences the power flowing through the junction and can cause the variation of the temperature of the device. When the soliton speed increases approaching its limiting value, i.e., the Swihart velocity, we demonstrate that the soliton-induces thermal effects significantly modify. Finally, we discuss how the appropriate material selection of the superconductors forming the junction is essential, since short quasiparticle relaxation times are required to observe fast thermal effects.
Short ballistic graphene Josephson junctions sustain superconducting current with a non-sinusoidal current-phase relation up to a critical current threshold. The current-phase relation, arising from proximitized superconductivity, is gate-voltage tun able and exhibits peculiar skewness observed in high quality graphene superconductors heterostructures with clean interfaces. These properties make graphene Josephson junctions promising sensitive quantum probes of microscopic fluctuations underlying transport in two-dimensions. We show that the power spectrum of the critical current fluctuations has a characteristic $1/f$ dependence on frequency, $f$, probing two points and higher correlations of carrier density fluctuations of the graphene channel induced by carrier traps in the nearby substrate. Tunability with the Fermi level, close to and far from the charge neutrality point, and temperature dependence of the noise amplitude are clear fingerprints of the underlying material-inherent processes. Our results suggest a roadmap for the analysis of decoherence sources in the implementation of coherent devices by hybrid nanostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا