ترغب بنشر مسار تعليمي؟ اضغط هنا

Anharmonicity of a Gatemon Qubit with a Few-Mode Josephson Junction

87   0   0.0 ( 0 )
 نشر من قبل Karl Petersson
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coherent operation of gate-voltage-controlled hybrid transmon qubits (gatemons) based on semiconductor nanowires was recently demonstrated. Here we experimentally investigate the anharmonicity in epitaxial InAs-Al Josephson junctions, a key parameter for their use as a qubit. Anharmonicity is found to be reduced by roughly a factor of two compared to conventional metallic junctions, and dependent on gate voltage. Experimental results are consistent with a theoretical model, indicating that Josephson coupling is mediated by a small number of highly transmitting modes in the semiconductor junction.



قيم البحث

اقرأ أيضاً

194 - S. Hikino , M. Mori , S. Takahashi 2009
The ac Josephson effect in a ferromagnetic Josephson junction, which is composed of two superconductors separated by a ferromagnetic metal (FM), is studied by a tunneling Hamiltonian and Greens function method. We obtain two types of superconducting phase dependent current, i.e., Josephson current and quasiparticle-pair-interference current (QPIC). These currents change their signs with thickness of the FM layer due to the 0-$pi$ transition characteristic to the ferromagnetic Josephson junction. As a function of applied voltage, the Josephson critical current shows a logarithmic divergence called the Riedel peak at the gap voltage, while the QPIC shows a discontinuous jump. The Riedel peak reverses due to the 0-$pi$ transition and disappears near the 0-$pi$ transition point. The discontinuous jump in the QPIC also represents similar behaviors to the Riedel peak. These results are in contrast to the conventional ones.
We analyze the quantum dynamics of two electromagnetic oscillators coupled in series to a voltage biased Josephson junction. When the applied voltage leads to a Josephson frequency across the junction which matches the sum of the two mode frequencies , tunneling Cooper pairs excite photons in both modes simultaneously leading to far-from-equilibrium states. These states display highly non-classical features including strong anti-bunching, violation of Cauchy-Schwartz inequalities, and number squeezing. The regimes of low and high photon occupancies allow for analytical results which are supported by a full numerical treatment. The impact of asymmetries between the two modes is explored, revealing a pronounced enhancement of number squeezing when the modes are damped at different rates.
We consider a superconducting coplanar waveguide resonator where the central conductor is interrupted by a series of uniformly spaced Josephson junctions. The device forms an extended medium that is optically nonlinear on the single photon level with normal modes that inherit the full nonlinearity of the junctions but are nonetheless accessible via the resonator ports. For specific plasma frequencies of the junctions a set of normal modes clusters in a narrow band and eventually become entirely degenerate. Upon increasing the intensity of a red detuned drive on these modes, we observe a sharp and synchronized switching from low occupation quantum states to high occupation classical fields, accompanied by a pronounced jump from low to high output intensity.
We consider a two-dimensional electron gas with strong spin-orbit coupling contacted by two superconducting leads, forming a Josephson junction. We show that in the presence of an in-plane Zeeman field the quasi-one-dimensional region between the two superconductors can support a topological superconducting phase hosting Majorana bound states at its ends. We study the phase diagram of the system as a function of the Zeeman field and the phase difference between the two superconductors (treated as an externally controlled parameter). Remarkably, at a phase difference of $pi$, the topological phase is obtained for almost any value of the Zeeman field and chemical potential. In a setup where the phase is not controlled externally, we find that the system undergoes a first-order topological phase transition when the Zeeman field is varied. At the transition, the phase difference in the ground state changes abruptly from a value close to zero, at which the system is trivial, to a value close to $pi$, at which the system is topological. The critical current through the junction exhibits a sharp minimum at the critical Zeeman field, and is therefore a natural diagnostic of the transition. We point out that in presence of a symmetry under a modified mirror reflection followed by time reversal, the system belongs to a higher symmetry class and the phase diagram as a function of the phase difference and the Zeeman field becomes richer.
We present a microscopic theory for the current through a tunnel Josephson junction coupled to a non-linear environment, which consists of an Andreev two-level system coupled to a harmonic oscillator. It models a recent experiment [Bretheau, Girit, P othier, Esteve, and Urbina, Nature (London) 499, 312 (2013)] on photon spectroscopy of Andreev bound states in a superconducting atomic-size contact. We find the eigenenergies and eigenstates of the environment and derive the current through the junction due to inelastic Cooper pair tunneling. The current-voltage characteristic reveals the transitions between the Andreev bound states, the excitation of the harmonic mode that hybridizes with the Andreev bound states, as well as multi-photon processes. The calculated spectra are in fair agreement with the experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا