ﻻ يوجد ملخص باللغة العربية
We investigate the mechanical response of jammed packings of repulsive, frictionless spherical particles undergoing isotropic compression. Prior simulations of the soft-particle model, where the repulsive interactions scale as a power-law in the interparticle overlap with exponent $alpha$, have found that the ensemble-averaged shear modulus $langle G rangle$ increases with pressure $P$ as $sim P^{(alpha-3/2)/(alpha-1)}$ at large pressures. However, a deep theoretical understanding of this scaling behavior is lacking. We show that the shear modulus of jammed packings of frictionless, spherical particles has two key contributions: 1) continuous variations as a function of pressure along geometrical families, for which the interparticle contact network does not change, and 2) discontinuous jumps during compression that arise from changes in the contact network. We show that the shear modulus of the first geometrical family for jammed packings can be collapsed onto a master curve: $G^{(1)}/G_0 = (P/P_0)^{(alpha-2)/(alpha-1)} - P/P_0$, where $P_0 sim N^{-2(alpha-1)}$ is a characteristic pressure that separates the two power-law scaling regions and $G_0 sim N^{-2(alpha-3/2)}$. Deviations from this form can occur when there is significant non-affine particle motion near changes in the contact network. We further show that $langle G (P)rangle$ is not simply a sum of two power-laws, but $langle G rangle sim (P/P_c)^a$, where $a approx (alpha -2)/(alpha-1)$ in the $P rightarrow 0$ limit and $langle G rangle sim (P/P_c)^b$, where $b gtrsim (alpha -3/2)/(alpha-1)$ above a characteristic pressure $P_c$. In addition, the magnitudes of both contributions to $langle Grangle$ from geometrical families and changes in the contact network remain comparable in the large-system limit for $P >P_c$.
We present 3D DEM simulations of jammed bidisperse granular packings to investigate their jamming density, $phi_J$, and bulk modulus, $K$, as a function of the size ratio, $delta$, and concentration of small particles, $X_{mathrm S}$. We determine th
We present measurements of the stress response of packings formed from a wide range of particle shapes. Besides spheres these include convex shapes such as the Platonic solids, truncated tetrahedra, and triangular bipyramids, as well as more complex,
The mechanical response of packings of purely repulsive, spherical particles to athermal, quasistatic simple shear near jamming onset is highly nonlinear. Previous studies have shown that, at small pressure $p$, the ensemble-averaged static shear mod
We study the vibrational modes of three-dimensional jammed packings of soft ellipsoids of revolution as a function of particle aspect ratio $epsilon$ and packing fraction. At the jamming transition for ellipsoids, as distinct from the idealized case
We show that non-Brownian suspensions of repulsive spheres below jamming display a slow relaxational dynamics with a characteristic time scale that diverges at jamming. This slow time scale is fully encoded in the structure of the unjammed packing an