ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure-dependent shear response of jammed packings of spherical particles

143   0   0.0 ( 0 )
 نشر من قبل Corey S. O'Hern
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The mechanical response of packings of purely repulsive, spherical particles to athermal, quasistatic simple shear near jamming onset is highly nonlinear. Previous studies have shown that, at small pressure $p$, the ensemble-averaged static shear modulus $langle G-G_0 rangle$ scales with $p^alpha$, where $alpha approx 1$, but above a characteristic pressure $p^{**}$, $langle G-G_0 rangle sim p^beta$, where $beta approx 0.5$. However, we find that the shear modulus $G^i$ for an individual packing typically decreases linearly with $p$ along a geometrical family where the contact network does not change. We resolve this discrepancy by showing that, while the shear modulus does decrease linearly within geometrical families, $langle G rangle$ also depends on a contribution from discontinuous jumps in $langle G rangle$ that occur at the transitions between geometrical families. For $p > p^{**}$, geometrical-family and rearrangement contributions to $langle G rangle$ are of opposite signs and remain comparable for all system sizes. $langle G rangle$ can be described by a scaling function that smoothly transitions between the two power-law exponents $alpha$ and $beta$. We also demonstrate the phenomenon of {it compression unjamming}, where a jammed packing can unjam via isotropic compression.



قيم البحث

اقرأ أيضاً

We focus on the response of mechanically stable (MS) packings of frictionless, bidisperse disks to thermal fluctuations, with the aim of quantifying how nonlinearities affect system properties at finite temperature. Packings of disks with purely repu lsive contact interactions possess two main types of nonlinearities, one from the form of the interaction potential and one from the breaking (or forming) of interparticle contacts. To identify the temperature regime at which the contact-breaking nonlinearities begin to contribute, we first calculated the minimum temperatures $T_{cb}$ required to break a single contact in the MS packing for both single and multiple eigenmode perturbations of the $T=0$ MS packing. We then studied deviations in the constant volume specific heat $C_V$ and deviations of the average disk positions $Delta r$ from their $T=0$ values in the temperature regime $T_{cb} < T < T_{r}$, where $T_r$ is the temperature beyond which the system samples the basin of a new MS packing. We find that the deviation in the specific heat per particle $Delta {overline C}_V^0/{overline C}_V^0$ relative to the zero temperature value ${overline C}_V^0$ can grow rapidly above $T_{cb}$, however, the deviation $Delta {overline C}_V^0/{overline C}_V^0$ decreases as $N^{-1}$ with increasing system size. To characterize the relative strength of contact-breaking versus form nonlinearities, we measured the ratio of the average position deviations $Delta r^{ss}/Delta r^{ds}$ for single- and double-sided linear and nonlinear spring interactions. We find that $Delta r^{ss}/Delta r^{ds} > 100$ for linear spring interactions and is independent of system size.
We perform computational studies of repulsive, frictionless disks to investigate the development of stress anisotropy in mechanically stable (MS) packings. We focus on two protocols for generating MS packings: 1) isotropic compression and 2) applied simple or pure shear strain $gamma$ at fixed packing fraction $phi$. MS packings of frictionless disks occur as geometric families (i.e. parabolic segments with positive curvature) in the $phi$-$gamma$ plane. MS packings from protocol 1 populate parabolic segments with both signs of the slope, $dphi/dgamma >0$ and $dphi/dgamma <0$. In contrast, MS packings from protocol 2 populate segments with $dphi/dgamma <0$ only. For both simple and pure shear, we derive a relationship between the stress anisotropy and dilatancy $dphi/dgamma$ obeyed by MS packings along geometrical families. We show that for MS packings prepared using isotropic compression, the stress anisotropy distribution is Gaussian centered at zero with a standard deviation that decreases with increasing system size. For shear jammed MS packings, the stress anisotropy distribution is a convolution of Weibull distributions that depend on strain, which has a nonzero average and standard deviation in the large-system limit. We also develop a framework to calculate the stress anisotropy distribution for packings generated via protocol 2 in terms of the stress anisotropy distribution for packings generated via protocol 1. These results emphasize that for repulsive frictionless disks, different packing-generation protocols give rise to different MS packing probabilities, which lead to differences in macroscopic properties of MS packings.
105 - F. Xiong , P. Wang , A. H. Clark 2019
We compare the structural and mechanical properties of mechanically stable (MS) packings of frictional disks in two spatial dimensions (2D) generated with isotropic compression and simple shear protocols from discrete element modeling (DEM) simulatio ns. We find that the average contact number and packing fraction at jamming onset are similar (with relative deviations $< 0.5%$) for MS packings generated via compression and shear. In contrast, the average stress anisotropy $langle {hat Sigma}_{xy} rangle = 0$ for MS packings generated via isotropic compression, whereas $langle {hat Sigma}_{xy} rangle >0$ for MS packings generated via simple shear. To investigate the difference in the stress state of MS packings, we develop packing-generation protocols to first unjam the MS packings, remove the frictional contacts, and then rejam them. Using these protocols, we are able to obtain rejammed packings with nearly identical particle positions and stress anisotropy distributions compared to the original jammed packings. However, we find that when we directly compare the original jammed packings and rejammed ones, there are finite stress anisotropy deviations $Delta {hat Sigma}_{xy}$. The deviations are smaller than the stress anisotropy fluctuations obtained by enumerating the force solutions within the null space of the contact networks generated via the DEM simulations. These results emphasize that even though the compression and shear jamming protocols generate packings with the same contact networks, there can be residual differences in the normal and tangential forces at each contact, and thus differences in the stress anisotropy.
359 - J. Zhang , K. VanderWerf , C. Li 2021
We investigate the mechanical response of jammed packings of circulo-lines, interacting via purely repulsive, linear spring forces, as a function of pressure $P$ during athermal, quasistatic isotropic compression. Prior work has shown that the ensemb le-averaged shear modulus for jammed disk packings scales as a power-law, $langle G(P) rangle sim P^{beta}$, with $beta sim 0.5$, over a wide range of pressure. For packings of circulo-lines, we also find robust power-law scaling of $langle G(P)rangle$ over the same range of pressure for aspect ratios ${cal R} gtrsim 1.2$. However, the power-law scaling exponent $beta sim 0.8$-$0.9$ is much larger than that for jammed disk packings. To understand the origin of this behavior, we decompose $langle Grangle$ into separate contributions from geometrical families, $G_f$, and from changes in the interparticle contact network, $G_r$, such that $langle G rangle = langle G_frangle + langle G_r rangle$. We show that the shear modulus for low-pressure geometrical families for jammed packings of circulo-lines can both increase {it and} decrease with pressure, whereas the shear modulus for low-pressure geometrical families for jammed disk packings only decreases with pressure. For this reason, the geometrical family contribution $langle G_f rangle$ is much larger for jammed packings of circulo-lines than for jammed disk packings at finite pressure, causing the increase in the power-law scaling exponent.
We compare the elastic response of spring networks whose contact geometry is derived from real packings of frictionless discs, to networks obtained by randomly cutting bonds in a highly connected network derived from a well-compressed packing. We fin d that the shear response of packing-derived networks, and both the shear and compression response of randomly cut networks, are all similar: the elastic moduli vanish linearly near jamming, and distributions characterizing the local geometry of the response scale with distance to jamming. Compression of packing-derived networks is exceptional: the elastic modulus remains constant and the geometrical distributions do not exhibit simple scaling. We conclude that the compression response of jammed packings is anomalous, rather than the shear response.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا