ﻻ يوجد ملخص باللغة العربية
We study the approximability of the NP-complete textsc{Maximum Minimal Feedback Vertex Set} problem. Informally, this natural problem seems to lie in an intermediate space between two more well-studied problems of this type: textsc{Maximum Minimal Vertex Cover}, for which the best achievable approximation ratio is $sqrt{n}$, and textsc{Upper Dominating Set}, which does not admit any $n^{1-epsilon}$ approximation. We confirm and quantify this intuition by showing the first non-trivial polynomial time approximation for textsc{Max Min FVS} with a ratio of $O(n^{2/3})$, as well as a matching hardness of approximation bound of $n^{2/3-epsilon}$, improving the previous known hardness of $n^{1/2-epsilon}$. The approximation algorithm also gives a cubic kernel when parameterized by the solution size. Along the way, we also obtain an $O(Delta)$-approximation and show that this is asymptotically best possible, and we improve the bound for which the problem is NP-hard from $Deltage 9$ to $Deltage 6$. Having settled the problems approximability in polynomial time, we move to the context of super-polynomial time. We devise a generalization of our approximation algorithm which, for any desired approximation ratio $r$, produces an $r$-approximate solution in time $n^{O(n/r^{3/2})}$. This time-approximation trade-off is essentially tight: we show that under the ETH, for any ratio $r$ and $epsilon>0$, no algorithm can $r$-approximate this problem in time $n^{O((n/r^{3/2})^{1-epsilon})}$, hence we precisely characterize the approximability of the problem for the whole spectrum between polynomial and sub-exponential time, up to an arbitrarily small constant in the second exponent.
In the $d$-Scattered Set problem we are asked to select at least $k$ vertices of a given graph, so that the distance between any pair is at least $d$. We study the problems (in-)approximability and offer improvements and extensions of known results f
A constraint satisfaction problem (CSP), Max-CSP$({cal F})$, is specified by a finite set of constraints ${cal F} subseteq {[q]^k to {0,1}}$ for positive integers $q$ and $k$. An instance of the problem on $n$ variables is given by $m$ applications o
A Boolean constraint satisfaction problem (CSP), Max-CSP$(f)$, is a maximization problem specified by a constraint $f:{-1,1}^kto{0,1}$. An instance of the problem consists of $m$ constraint applications on $n$ Boolean variables, where each constraint
The k-means objective is arguably the most widely-used cost function for modeling clustering tasks in a metric space. In practice and historically, k-means is thought of in a continuous setting, namely where the centers can be located anywhere in the
Given a binary dominance relation on a set of alternatives, a common thread in the social sciences is to identify subsets of alternatives that satisfy certain notions of stability. Examples can be found in areas as diverse as voting theory, game theo