ﻻ يوجد ملخص باللغة العربية
A constraint satisfaction problem (CSP), Max-CSP$({cal F})$, is specified by a finite set of constraints ${cal F} subseteq {[q]^k to {0,1}}$ for positive integers $q$ and $k$. An instance of the problem on $n$ variables is given by $m$ applications of constraints from ${cal F}$ to subsequences of the $n$ variables, and the goal is to find an assignment to the variables that satisfies the maximum number of constraints. In the $(gamma,beta)$-approximation version of the problem for parameters $0 leq beta < gamma leq 1$, the goal is to distinguish instances where at least $gamma$ fraction of the constraints can be satisfied from instances where at most $beta$ fraction of the constraints can be satisfied. In this work we consider the approximability of this problem in the context of streaming algorithms and give a dichotomy result in the dynamic setting, where constraints can be inserted or deleted. Specifically, for every family ${cal F}$ and every $beta < gamma$, we show that either the approximation problem is solvable with polylogarithmic space in the dynamic setting, or not solvable with $o(sqrt{n})$ space. We also establish tight inapproximability results for a broad subclass in the streaming insertion-only setting. Our work builds on, and significantly extends previous work by the authors who consider the special case of Boolean variables ($q=2$), singleton families ($|{cal F}| = 1$) and where constraints may be placed on variables or their negations. Our framework extends non-trivially the previous work allowing us to appeal to richer norm estimation algorithms to get our algorithmic results. For our negative results we introduce new variants of the communication problems studied in the previous work, build new reductions for these problems, and extend the technical parts of previous works.
A Boolean constraint satisfaction problem (CSP), Max-CSP$(f)$, is a maximization problem specified by a constraint $f:{-1,1}^kto{0,1}$. An instance of the problem consists of $m$ constraint applications on $n$ Boolean variables, where each constraint
We consider the approximability of constraint satisfaction problems in the streaming setting. For every constraint satisfaction problem (CSP) on $n$ variables taking values in ${0,ldots,q-1}$, we prove that improving over the trivial approximability
We give an efficient algorithm to strongly refute emph{semi-random} instances of all Boolean constraint satisfaction problems. The number of constraints required by our algorithm matches (up to polylogarithmic factors) the best-known bounds for effic
We study the approximability of constraint satisfaction problems (CSPs) by linear programming (LP) relaxations. We show that for every CSP, the approximation obtained by a basic LP relaxation, is no weaker than the approximation obtained using relaxa
We study the approximability of the NP-complete textsc{Maximum Minimal Feedback Vertex Set} problem. Informally, this natural problem seems to lie in an intermediate space between two more well-studied problems of this type: textsc{Maximum Minimal Ve