ترغب بنشر مسار تعليمي؟ اضغط هنا

The Complexity of Computing Minimal Unidirectional Covering Sets

157   0   0.0 ( 0 )
 نشر من قبل Dorothea Baumeister
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a binary dominance relation on a set of alternatives, a common thread in the social sciences is to identify subsets of alternatives that satisfy certain notions of stability. Examples can be found in areas as diverse as voting theory, game theory, and argumentation theory. Brandt and Fischer [BF08] proved that it is NP-hard to decide whether an alternative is contained in some inclusion-minimal upward or downward covering set. For both problems, we raise this lower bound to the Theta_{2}^{p} level of the polynomial hierarchy and provide a Sigma_{2}^{p} upper bound. Relatedly, we show that a variety of other natural problems regarding minimal or minimum-size covering sets are hard or complete for either of NP, coNP, and Theta_{2}^{p}. An important consequence of our results is that neither minimal upward nor minimal downward covering sets (even when guaranteed to exist) can be computed in polynomial time unless P=NP. This sharply contrasts with Brandt and Fischers result that minimal bidirectional covering sets (i.e., sets that are both minimal upward and minimal downward covering sets) are polynomial-time computable.



قيم البحث

اقرأ أيضاً

We show that the BIMATRIX game does not have a fully polynomial-time approximation scheme, unless PPAD is in P. In other words, no algorithm with time polynomial in n and 1/epsilon can compute an epsilon-approximate Nash equilibrium of an n by nbimat rix game, unless PPAD is in P. Instrumental to our proof, we introduce a new discrete fixed-point problem on a high-dimensional cube with a constant side-length, such as on an n-dimensional cube with side-length 7, and show that they are PPAD-complete. Furthermore, we prove, unless PPAD is in RP, that the smoothed complexity of the Lemke-Howson algorithm or any algorithm for computing a Nash equilibrium of a bimatrix game is polynomial in n and 1/sigma under perturbations with magnitude sigma. Our result answers a major open question in the smoothed analysis of algorithms and the approximation of Nash equilibria.
Games on graphs provide a natural and powerful model for reactive systems. In this paper, we consider generalized reachability objectives, defined as conjunctions of reachability objectives. We first prove that deciding the winner in such games is $P SPACE$-complete, although it is fixed-parameter tractable with the number of reachability objectives as parameter. Moreover, we consider the memory requirements for both players and give matching upper and lower bounds on the size of winning strategies. In order to allow more efficient algorithms, we consider subclasses of generalized reachability games. We show that bounding the size of the reachability sets gives two natural subclasses where deciding the winner can be done efficiently.
The use of monotonicity and Tarskis theorem in existence proofs of equilibria is very widespread in economics, while Tarskis theorem is also often used for similar purposes in the context of verification. However, there has been relatively little in the way of analysis of the complexity of finding the fixed points and equilibria guaranteed by this result. We study a computational formalism based on monotone functions on the $d$-dimensional grid with sides of length $N$, and their fixed points, as well as the closely connected subject of supermodular games and their equilibria. It is known that finding some (any) fixed point of a monotone function can be done in time $log^d N$, and we show it requires at least $log^2 N$ function evaluations already on the 2-dimensional grid, even for randomized algorithms. We show that the general Tarski problem of finding some fixed point, when the monotone function is given succinctly (by a boolean circuit), is in the class PLS of problems solvable by local search and, rather surprisingly, also in the class PPAD. Finding the greatest or least fixed point guaranteed by Tarskis theorem, however, requires $dcdot N$ steps, and is NP-hard in the white box model. For supermodular games, we show that finding an equilibrium in such games is essentially computationally equivalent to the Tarski problem, and finding the maximum or minimum equilibrium is similarly harder. Interestingly, two-player supermodular games where the strategy space of one player is one-dimensional can be solved in $O(log N)$ steps. We also observe that computing (approximating) the value of Condons (Shapleys) stochastic games reduces to the Tarski problem. An important open problem highlighted by this work is proving a $Omega(log^d N)$ lower bound for small fixed dimension $d geq 3$.
314 - Lin Chen 2020
The bribery problem in election has received considerable attention in the literature, upon which various algorithmic and complexity results have been obtained. It is thus natural to ask whether we can protect an election from potential bribery. We a ssume that the protector can protect a voter with some cost (e.g., by isolating the voter from potential bribers). A protected voter cannot be bribed. Under this setting, we consider the following bi-level decision problem: Is it possible for the protector to protect a proper subset of voters such that no briber with a fixed budget on bribery can alter the election result? The goal of this paper is to give a full picture on the complexity of protection problems. We give an extensive study on the protection problem and provide algorithmic and complexity results. Comparing our results with that on the bribery problems, we observe that the protection problem is in general significantly harder. Indeed, it becomes $sum_{p}^2$-complete even for very restricted special cases, while most bribery problems lie in NP. However, it is not necessarily the case that the protection problem is always harder. Some of the protection problems can still be solved in polynomial time, while some of them remain as hard as the bribery problem under the same setting.
126 - Jack Murtagh , Salil Vadhan 2015
In the study of differential privacy, composition theorems (starting with the original paper of Dwork, McSherry, Nissim, and Smith (TCC06)) bound the degradation of privacy when composing several differentially private algorithms. Kairouz, Oh, and Vi swanath (ICML15) showed how to compute the optimal bound for composing $k$ arbitrary $(epsilon,delta)$-differentially private algorithms. We characterize the optimal composition for the more general case of $k$ arbitrary $(epsilon_{1},delta_{1}),ldots,(epsilon_{k},delta_{k})$-differentially private algorithms where the privacy parameters may differ for each algorithm in the composition. We show that computing the optimal composition in general is $#$P-complete. Since computing optimal composition exactly is infeasible (unless FP=$#$P), we give an approximation algorithm that computes the composition to arbitrary accuracy in polynomial time. The algorithm is a modification of Dyers dynamic programming approach to approximately counting solutions to knapsack problems (STOC03).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا