ﻻ يوجد ملخص باللغة العربية
Context: A census of faint and tiny star forming complexes at high redshift is key to improving our understanding of reionizing sources, galaxy growth and the formation of globular clusters. Aims: We present the MUSE Deep Lensed Field (MDLF) program. Methods: We describe Deep MUSE observations of 17.1 hours integration on a single pointing over the Hubble Frontier Field galaxy cluster MACS~J0416. Results: We confirm spectroscopic redshifts for all 136 multiple images of 48 source galaxies at 0.9<z<6.2. Within those galaxies, we securely identify 182 multiple images of 66 galaxy components that we use to constrain our lens model. We identify 116 clumps belonging to background high-z galaxies; the majority of them are multiple images and span magnitude, size and redshift intervals of [-18,-10], [~400-3] parsec and 1<z<6.6, respectively, with the most magnified ones probing possible single gravitationally bound star clusters. The depth of the MDLF combined with lensing magnification lead us to reach a detection limit for unresolved emission lines of a few 10$^{-20}$ erg/s/cm2, after correction for lensing magnification. Ultraviolet high-ionization metal lines (and HeII1640) are detected with S/N>10 for individual objects down to de-lensed magnitude 28-30 suggesting that they are common in such faint sources. Conclusions:Deep MUSE observations, in combination with existing HST imaging, allowed us to:(1) confirm redshifts for extremely faint high-z sources;(2) peer into their internal clumps (down to 100-200 pc scale);(3) in some cases break down such clumps into bound star clusters (<20 pc scale);(4) double the number of constraints for the lens model,reaching an unprecedented set of 182 bona-fide multiple images and confirming up to 213 galaxy cluster members. These results demonstrate the power that JWST and future ELTs will have when combined to study gravitational telescopes.[abridged]
We searched for z > 7 Lyman-break galaxies (LBGs) in the optical-to-mid-infrared Hubble Frontier Field and associated parallel field observations of the strong-lensing cluster MACS J0416-2403. We discovered 22 candidates, of which six lie at z > 9 an
We present multiwavelength photometric catalogues (HST, Spitzer and Hawk-I K band) for the first two of the Frontier Fields, Abell2744 and MACSJ0416 (plus their parallel fields). To detect faint sources even in the central regions of the clusters, we
We discovered a strongly lensed (mu >40) Lya emission at z=6.629 (S/N~18) in the MUSE Deep Lensed Field (MDLF) targeting the Hubble Frontier Field galaxy cluster MACS~J0416. Dedicated lensing simulations imply that the Lya emitting region necessarily
We present a strong lensing analysis on the massive cluster Abell 370 (A370; z = 0.375), using a combination of deep multi-band Hubble Space Telescope (HST) imaging and Multi-Unit Spectroscopic Explorer (MUSE) spectroscopy. From only two hours of MUS
Non-resonant FeII* 2365, 2396, 2612, 2626 emission can potentially trace galactic winds in emission and provide useful constraints to wind models. From the 3x3 mosaic of the Hubble Ultra Deep Field (UDF) obtained with the VLT/MUSE integral field spec