ﻻ يوجد ملخص باللغة العربية
We present a strong lensing analysis on the massive cluster Abell 370 (A370; z = 0.375), using a combination of deep multi-band Hubble Space Telescope (HST) imaging and Multi-Unit Spectroscopic Explorer (MUSE) spectroscopy. From only two hours of MUSE data, we are able to measure 120 redshifts in the Southern BCG area, including several multiply-imaged lens systems. In total, we increase the number of multiply-imaged systems with a secure redshift from 4 to 15, nine of which are newly discovered. Of these, eight are located at z > 3, greatly extending the redshift range of spectroscopically-confirmed systems over previous work. Using these systems as constraints, we update a parametric lens model of A370, probing the mass distribution from cluster to galaxy scales. Overall, we find that a model with only two cluster- scale dark matter halos (one for each BCG) does a poor job of fitting these new image constraints. Instead, two additional mass clumps -- a central bar of mass located between the BCGs, and another clump located within a crown of galaxies in the Northern part of the cluster field -- provide significant improvements to the fit. Additional physical evidence suggests these clumps are indeed real features of the system, but with relatively few image constraints in the crown region, this claim is difficult to evaluate from a modeling perspective. Additional MUSE observations of A370 covering the entire strong-lensing region will greatly help these efforts, further improving our understanding of this intriguing cluster.
We present an updated strong-lensing analysis of the massive cluster Abell 370 (A370), continuing the work first presented in Lagattuta et al. (2017). In this new analysis, we take advantage of the deeper imaging data from the Hubble Space Telescope
We study the dynamics of Abell 370 (A370), a highly massive Hubble Frontier Fields galaxy cluster, using self-consistent three-dimensional N-body/hydrodynamical simulations. Our simulations are constrained by X-ray, optical spectroscopic and gravitat
We present an analysis of MUSE observations obtained on the massive Frontier Fields cluster Abell 2744. This new dataset covers the entire multiply-imaged region around the cluster core. We measure spectroscopic redshifts for HST-selected continuum s
We present the first observations of the Frontier Fields Cluster Abell S1063 taken with the newly commissioned Multi Unit Spectroscopic Explorer (MUSE) integral field spectrograph. Because of the relatively large field of view (1 arcmin^2), MUSE is i
This paper presents multiwavelength photometric catalogues of the last two Hubble Frontier Fields (HFF), the massive galaxy clusters Abell 370 and RXC J2248.7-4431. The photometry ranges from imaging performed on the Hubble Space Telescope (HST) to g