ﻻ يوجد ملخص باللغة العربية
We discovered a strongly lensed (mu >40) Lya emission at z=6.629 (S/N~18) in the MUSE Deep Lensed Field (MDLF) targeting the Hubble Frontier Field galaxy cluster MACS~J0416. Dedicated lensing simulations imply that the Lya emitting region necessarily crosses the caustic. The arc-like shape of the Lya extends 3 arcsec on the observed plane and is the result of two merged multiple images, each one with a de-lensed Lya luminosity L<~2.8 x 10^(40) erg/s arising from a confined region (< 150 pc effective radius). A spatially unresolved HST counterpart is barely detected at S/N~2 after stacking the near-infrared bands, corresponding to an observed(intrinsic) magnitude m_(1500)>~30.8(>~35.0). The inferred rest-frame Lya equivalent width is EWo > 1120 A if the IGM transmission is T(IGM)<0.5. The low luminosities and the extremely large Lya EWo match the case of a Population~III star complex made of several dozens stars (~ 10^4 Msun) which irradiate a HII region crossing the caustic. While the Lya and stellar continuum are among the faintest ever observed at this redshift, the continuum and the Lya emissions could be affected by differential magnification, possibly biasing the EWo estimate. The aforementioned tentative HST detection tend to favor a large EWo, making such a faint Pop~III candidate a key target for the James Webb Space Telescope and Extremely Large Telescopes.
Context: A census of faint and tiny star forming complexes at high redshift is key to improving our understanding of reionizing sources, galaxy growth and the formation of globular clusters. Aims: We present the MUSE Deep Lensed Field (MDLF) program.
We present spatially resolved stellar kinematic maps, for the first time, for a sample of 17 intermediate redshift galaxies (0.2 < z < 0.8). We used deep MUSE/VLT integral field spectroscopic observations in the Hubble Deep Field South (HDFS) and Hub
Disc-halo decomposition on rotationally supported star-forming galaxies (SFGs) at $z>1$ are often limited to massive galaxies ($M_star>10^{10}~M_odot$) and rely on either deep Integral Field Spectroscopy data or stacking analyses. We present a study
Star-forming galaxies have been found to follow a relatively tight relation between stellar mass ($M_{*}$) and star formation rate (SFR), dubbed the `star formation sequence. A turnover in the sequence has been observed, where galaxies with $M_{*} <
Massive early-type galaxies are believed to be the end result of an extended mass accretion history. The stars formed in situ very early on in the initial phase of the assembly might have originated from an extremely intense star formation burst, and