ﻻ يوجد ملخص باللغة العربية
Conformal mapping, a classical topic in complex analysis and differential geometry, has become a subject of great interest in the area of surface parameterization in recent decades with various applications in science and engineering. However, most of the existing conformal parameterization algorithms only focus on simply-connected surfaces and cannot be directly applied to surfaces with holes. In this work, we propose two novel algorithms for computing the conformal parameterization of multiply-connected surfaces. We first develop an efficient method for conformally parameterizing an open surface with one hole to an annulus on the plane. Based on this method, we then develop an efficient method for conformally parameterizing an open surface with $k$ holes onto a unit disk with $k$ circular holes. The conformality and bijectivity of the mappings are ensured by quasi-conformal theory. Numerical experiments and applications are presented to demonstrate the effectiveness of the proposed methods.
With the advancement in 3D scanning technology, there has been a surge of interest in the use of point clouds in science and engineering. To facilitate the computations and analyses of point clouds, prior works have considered parameterizing them ont
In this work, we present a novel, integrated rigged character simulation framework in Conformal Geometric Algebra (CGA) that supports, for the first time, real-time cuts and tears, before and/or after the animation, while maintaining deformation topo
We implement a version of conformal field theory in a doubly connected domain to connect it to the theory of annulus SLE of various types, including the standard annulus SLE, the reversible annulus SLE, and the annulus SLE with several force points.
The dynamics of low energy electrons in general static strained graphene surface is modelled mathematically by the Dirac equation in curved space-time. In Cartesian coordinates, a parametrization of the surface can be straightforwardly obtained, but
An efficient computer algorithm is described for the perspective drawing of a wide class of surfaces. The class includes surfaces corresponding lo single-valued, continuous functions which are defined over rectangular domains. The algorithm automatic