ﻻ يوجد ملخص باللغة العربية
We implement a version of conformal field theory in a doubly connected domain to connect it to the theory of annulus SLE of various types, including the standard annulus SLE, the reversible annulus SLE, and the annulus SLE with several force points. This implementation considers the statistical fields generated under the OPE multiplication by the Gaussian free field and its central/background charge modifications with a weighted combination of Dirichlet and excursion-reflected boundary conditions. We derive the Eguchi-Ooguri version of Wards equations and Belavin-Polyakov-Zamolodchikov equations for those statistical fields and use them to show that the correlations of fields in the OPE family under the insertion of the one-leg operators are martingale-observables for variants of annulus SLEs. We find Coulomb gas (Dotsenko-Fateev integral) solutions to the parabolic partial differential equations for partition functions of conformal field theory for the reversible annulus SLE.
We give a direct probabilistic construction for correlation functions in a logarithmic conformal field theory (log-CFT) of central charge $-2$. Specifically, we show that scaling limits of Peano curves in the uniform spanning tree in topological poly
For every ADE Dynkin diagram, we give a realization, in terms of usual fusion algebras (graph algebras), of the algebra of quantum symmetries described by the associated Ocneanu graph. We give explicitly, in each case, the list of the corresponding twisted partition functions
It was realized recently that the chordal, radial and dipolar SLEs are special cases of a general slit holomorphic stochastic flow. We characterize those slit holomorphic stochastic flows which generate level lines of the Gaussian free field. In part
We propose a new axiom system for unitary quantum field theories on curved space-time backgrounds, by postulating that the partition function and the correlators extend analytically to a certain domain of complex-valued metrics. Ordinary Riemannian m
We study a nonlinear stochastic heat equation forced by a space-time white noise on closed surfaces, with nonlinearity $e^{beta u}$. This equation corresponds to the stochastic quantization of the Liouville quantum gravity (LQG) measure. (i) We first