ﻻ يوجد ملخص باللغة العربية
The dynamics of low energy electrons in general static strained graphene surface is modelled mathematically by the Dirac equation in curved space-time. In Cartesian coordinates, a parametrization of the surface can be straightforwardly obtained, but the resulting Dirac equation is intricate for general surface deformations. Two different strategies are introduced to simplify this problem: the diagonal metric approximation and the change of variables to isothermal coordinates. These coordinates are obtained from quasi-conformal transformations characterized by the Beltrami equation, whose solution gives the mapping between both coordinate systems. To implement this second strategy, a least square finite-element numerical scheme is introduced to solve the Beltrami equation. The Dirac equation is then solved via an accurate pseudo-spectral numerical method in the pseudo-Hermitian representation that is endowed with explicit unitary evolution and conservation of the norm. The two approaches are compared and applied to the scattering of electrons on Gaussian shaped graphene surface deformations. It is demonstrated that electron wave packets can be focused by these local strained regions.
The paper presents a theoretical description of the effects of strain induced by out-of-plane deformations on charge distributions and transport on graphene. A review of a continuum model for electrons using the Dirac formalism is complemented with e
We present an extension of recent relativistic Lattice Boltzmann methods based on Gaussian quadratures for the study of fluids in (2+1) dimensions. The new method is applied to the analysis of electron flow in graphene samples subject to electrostati
In this work, we study the microscopic dynamics of distorted skyrmions in strained chiral magnets [K. Shibata et al., Nat. Nanotech. 10, 589 (2015)] under gradient magnetic field or electric current by Landau-Lifshitz-Gilbert simulations of the aniso
We derive a formula describing the transformation of the Hawking-Hayward quasi-local energy under a conformal rescaling of the spacetime metric. A known formula for the transformation of the Misner-Sharp-Hernandez mass is recovered as a special case.
Recently, a distinct topological semimetal, nodal-net semimetal, has been identified by Wang et al. through ab initio calculations [Phys. Rev. Lett. 120, 026402 (2018)]. The authors claimed that a new body-centered tetragonal carbon allotrope with I4