ﻻ يوجد ملخص باللغة العربية
As an energy storing and converting device near atomic size, a quantum battery (QB) promises enhanced charging power and extractable work using quantum resources. However, the ubiquitous decoherence causes its cyclic charging-storing-discharging process to become deactivated, which is called aging of the QB. Here, we propose a mechanism to overcome the aging of a QB. It is found that the decoherence of the QB is suppressed when two Floquet bound states (FBSs) are formed in the quasienergy spectrum of the total system consisting of the QB-charger setup and their respective environments. As long as either the quasienergies of the two FBSs are degenerate or the QB-charger coupling is large in the presence of two FBSs, the QB exposed to the dissipative environments returns to its near-ideal cyclic stage. Our result supplies an insightful guideline to realize the QB in practice using Floquet engineering.
Quantum coherences, correlations and collective effects can be harnessed to the advantage of quantum batteries. Here, we introduce a feasible structure engineering scheme that is applicable to spin-based open quantum batteries. Our scheme, which buil
We propose a `Floquet engineering formalism to systematically design a periodic driving protocol in order to stroboscopically realize the desired system starting from a given static Hamiltonian. The formalism is applicable to quantum systems which ha
Counterdiabatic (CD) driving presents a way of generating adiabatic dynamics at arbitrary pace, where excitations due to non-adiabaticity are exactly compensated by adding an auxiliary driving term to the Hamiltonian. While this CD term is theoretica
We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quant
The presence of quantum scars, athermal eigenstates of a many-body Hamiltonian with finite energy density, leads to absence of ergodicity and long-time coherent dynamics in closed quantum systems starting from simple initial states. Such non-ergodic